

2 3

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

i18n
It has happened. It is almost 1 year when I started community
driven initiative in Poland to create good newspaper about Java.
First 4 issues (one every 3 months) were published only in Polish,
however the readers’ response was so great that I decided to
give that magazine to every Java developer. That’s why you can
see our last issue (in Poland it was June issue) in English.

There was so many people that helped me to get to this point
that I am afraid of forgetting somebody. I would like to say thank you to my wife, who
gave me time to do this. In addition she gave some of her own time to review articles
and help me making many other decisions.

I would like to thank Marek Podsiadly, who is guy who wrote most of the “new” webpa-
ge for javaexpress.pl and dworld.pl. Also big thanks to Jakub Sosinski (kontakt@vriltek.
com), who is responsible for all graphics. I wouldn’t be able to publish English issue wi-
thout translators. Starting from Pawel Cegla, who translates most of the articles to En-
glish, Magdalena Rudny, Lukasz Baran and Boguslaw Osuch who joined the team and
contributed to this issue.

Last, but not least I would like to thank our partners, e-Point and ISO-
LUTION who support our effort. And Adobe, who gave us InDesign to
make our DTP much easier.

If you would like to join our team or contribute article, or maybe your
company can support us, please write to me at kontakt@dworld.pl.

See you in 3 months,
Grzegorz Duda

Schedule

i18n� 2

GeecOn�2009� 3

intrOductiOn�tO�GrailS� 5

the�prOblemS�Of�larGe�J2ee�applicatiOnS� 8

Gmf�-�hOw�tO�create�a�Graphical�editOr�in�a�few�mOmentS� 17

J2me:�ObJectS�SerializatiOn� 25

Xml�in�Java�–�XStream�library� 37

eXpreSS�KillerS,�part�iii� 43

teamcity:�pre-teSted�cOmmit.� 44

eXpreSS�KillerS,�part�iii�-�SOlutiOn� 47

layerinG� 49

GrOOvymaG�review�-�June�2009� 62

Engineer

 Ed
ito

r:
 G

rz
eg

or
cz

 D
ud

a

Pr
oo

fr
ea

di
ng

: A
gn

ie
sz

ka
 W

ad
ow

sk
a-

D
ud

a
W

eb
 p

ag
e:

 M
ar

ek
 P

od
si

ad
ly

G

ra
ph

ic
 d

es
ig

n:
 Ja

ku
b

So
si

ns
ki

Tr

an
sl

ati
on

: P
aw

el
 C

eg
la

, M
ag

da
le

na
 R

ud
ny

, L
uk

as
z

Ba
ra

n,
 B

og
us

la
w

 O
su

ch

mailto:kontakt%40vriltek.com?subject=JAVA%20exPress
mailto:kontakt%40vriltek.com?subject=JAVA%20exPress
mailto:kontakt%40dworld.pl?subject=JAVA%20exPress

2 3

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

GeecOn�2009

JaKub�dżOn

Inception
The idea of realizing an international con-
ference dedicated to Java language was
born in minds of its organizers more than
an year ago, when the lack of such event
was bothering them the most. The idea
was simple – organize large conference
during which the speakers would be pe-
ople well known among Java developers
and the attendees would come mostly
from Central Europe. Another feature of
the conference was going to be its „mobi-
lity” each year (as it was supposed to be
a recurring event from the beginning) it
was supposed to be held in different Cen-
tral European city. After many long prepa-
rations the date and place of the first edi-
tion of GeeCON conference was establi-
shed to May, 7-8, Kraków, Multikino.

The invitations to give a speech were sent
to many people, amongst which some
agreed to come. Unofficial motto of the
conference was “from community to com-
munity” so Call-for-Papers was announ-
ced, thanks to which we managed to in-
vite another people with interesting pre-
sentations.

Day I
The first confe-
rence day be-
gun (for atten-
dees) at 8:30
AM with regi-
stration and
breakfast. The
opening lectu-
re was Simon
Ritter’s “Ja-
vaFX: The Plat-

form for Rich Internet Applications”, after
which the conference ran on two tracks.
The other speakers that day were Alef
Arendsen, Corneliu Vasile Creanga, Miško
Hevery, Waldemar Kot, Luc Duponcheel,
Jacek Laskowski, Václav Pech, Szczepan Fa-
ber, Piotr Walczyszyn and Hans Docter.

At lunchtime, the attendees were pro-
vided with hot lunch, ones quality was a
subject of disagreement. In my opinion
lunch was great;). The first day of the con-
ference ended at 6PM.

Day II
The whole second day of the conferen-
ce ran on two parallel tracks. Because of
some personal issues one of invited spe-
akers - Michael Hüttermann was unable to
attend. At the last moment we managed
to ask Antonio Goncalves to conduct se-
cond lecture instead of Michael; the sub-
ject was Glassfish application server. All
the other speakers on that day were Arjen
Poutsma, Adam Bien, Stephan Janssen,
Giorgio Natili, Paweł Wrzeszcz, Tomasz Ka-
czanowski, Thomas Enebo, Bruno Bossola,
Lubomir Petrik and Jakub Podlesak.

The last day of the conference was plan-
ned to be shorter than the first one, but
more exciting – at the end, among all the
attendees who filled up the satisfaction
surveys, were drawn some gifts (netbook,

Megaphone

4 5

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

IntelliJ Idea licenses, books and JDD 2009
and Confidence 2009 passes).

Accompanying events
Apart from attending lectures, the con-
ference guests could take part in work-
shops held at AGH University of Science
and Technology the day before the con-

ference. Additional
trainings were pre-
pared by Sun Lear-
ning Systems and
split into four paths
taking place betwe-
en 11 AM and 6 PM.

During the confe-
rence attendees co-
uld have participa-
ted in Java mini-qu-
iz at JavaBlackBelt

booth. The prizes in this contest were bo-
oks provided by Helion publisher.

Google company also provided conferen-
ce participants with additional entertain-
ment by drawing its gadgets among the
people who filled up coupons given away
earlier.

On the evening of 7th of May the partici-
pants were able to take part in “Beer Cer-
tification Path” , organized by Compen-
dium Certification Center. During that
event attendees had to visit four designa-
ted Cracow pubs and drink one free beer
at each of them. Drinking a beer was cer-
tified with a stamp – all four stamps made
JAVA caption. Collecting all of the stamps
was granted with gifts from Sun Microsys-
tems.

Participants’ opinions
Below I would like to quote some opinions
given by the attendees in satisfactions su-
rveys.

“It’s really good idea to have Java confe-
rence in central Europe”
“Amazing work!”
“Lots of valuable information for every-
body”
“No failures. Everything was fine!”
“...the greatest Java conference in Poland,
very good speakers”
“In general, you did great job!”
“You brought really great speakers”
“.. in the fact whole conference is very
good and I’m glad to be here, hope to see
you next year!”
“I’m impressed what organizator had
made. Great job!”
“Most speakers were good (fresh sub-
jects, well-prepared) or VERY GOOD! In
general: Good work!”

The guilty ones
For the idea and realization of the Ge-
eCON 2009 are responsible the members
of Polish and Czech Java User Groups and
the GiK association; Adrian Nowak, Rado-
sław Holewa, Jakub Dżon, Grzegorz Duda,
Andrzej Grzesik, Marcin Gadamer, Miro-
slav Kopecky, Adam Dudczak and Adam
Parchimowicz.

Megaphone

4 5

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

intrOductiOn�tO�GrailS

mateuSz�mrOzewSKi

Main station

In this article I would like to introduce
Grails framework using a practical exam-
ple and a way of generating the applica-
tion based on a model called scaffolding.
We will configure our work environment
step by step and run our first application.
It will serve as an entry point to further
work with Grails.

What is Grails?
Grails is a framework based on Groovy
language. It introduces the “convention
over configuration” principle. The dyna-
mic behaviour of Groovy together with in-
tegrated Java solutions (we use the same
virtual machine) allow us to develop quic-
kly not only a prototype but a fully func-
tional application. Adding DSL (Domain
Specific Language) to that and we will get
an excellent package to work with. What
is worth mentioning is the fact that Gra-
ils is not reinventing the wheel. Some si-
milarities to other frameworks (not only
Java based) can be observed, but “under
the hood” we can find widely used solu-
tions: Spring, Hibernate, Jetty, HSQLDB, Si-
teMesh. Learning curve is very beneficial
for almost every programmer, regardless
of experience and abilities. Let us check it
out in practice.

First application
In order to start working with Grails we
have to spend a little time preparing the
environment. Nice surprise, it only takes
a moment. What do we need? I suggest
using NetBeans 6.5 and Grails 1.1. This set
gives us an environment to work without
any additional installation and configura-
tion. We download NetBeans 6.5 (http://
netbeans.org) and Grails 1.1 (http://grails.
org). NetBeans has by default the ability
to create Grails projects. The package with
Grails contains, besides the framework
and Groovy, Jetty web server, HSQLDB da-
tabase and other necessary components
(Hibernate, Spring, SiteMesh). The only
thing we have to do after installing NetBe-
ans and extracting Grails to any location, is
point NetBeans to this location. We select
Tools -> Options from the menu, Miscella-
neous -> Groovy tab and fill out the Grails
Home field.

After preparing the environment it is time
to create our first project. We select File
-> New Project… from the menu and then
Groovy -> Grails Application. We type Ad-
dressBook as the project name (we will
prepare a simple address book). We click
Finish and we are ready. Our first Grails
project can be run. We can do it by clicking
the Play button or pressing the F6 key. A
welcome screen will appear that assures
us we did everything correctly.

6 7

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

Grails is a framework based on Groovy language.

Main station

Let us start implementing our address
book. We will create the model in the be-
ginning. The classes of the model are called
domain classes in Grails. A domain class is
an object representation of an entity from
a database. From the context menu of the
project we choose New -> Grails Domain
Class…, type the name Contaxt and click
Finish. A new class called Contact.groovy
is created in grails-app/domain directory.
There we can define attributes which de-
scribe a contact from our address book. To
make things simple we will define 4 attri-
butes: name, phone, email and address.
Our class should look like below:

class Contact {
 String name
 String phone
 String email
 String address
 static constraints = {}
}

To create a working application we will
need a controller, because Grails uses
the MVC pattern. In order to do that, se-
lect New -> Grails Controller… from the
project context menu, use Contact as
the name and click Finish. There will be a
new class ContactController.groovy cre-
ated in the grails-app/controllers directo-
ry (surely you have noticed that NetBeans
shows these directories as “Controllers”
and “Domain Classes”). The newly created
controller has a default action – index, but
we will use a Grails feature which is called
scaffolding.

The scaffolding feature allows us to ge-
nerate user interface and business logic
to perform basic CRUD operations on our
data (Create, Read, Update, Delete). In or-
der to do that we have to modify our con-

troller to look like this:

class ContactController {
 def scaffold = true
}

Now we are ready to run the application
again (Play or F6). This time we should see
a welcome page with all available control-
lers. Only ContactController will be availa-
ble in our case. After selecting it we sho-
uld see an empty list of contacts as well
as an icon allowing us to add a new one.
We can give it a try right now. Our applica-
tion is not very complex but it is fully func-
tional. The one thing that the application
lacks is data validation. We can use the bu-
ilt-in validation which works well together
with scaffolding. To define the constraints
let us add constraints section in our doma-
in class. It is used to define not only what
values could the attributes have but also
order them in the generated application.
The constraints section should look like:

static constraints = {
 name(blank:false)
 phone(matches:”^\\+*\\d+”)
 email(email:true)
}

The order of the attributes in this section
will be used on the screen displaying the
details of the record, the list view and on
the add/edit forms. We define that the
name attribute cannot be empty. You sho-
uld remember that blank can be used only
for text values and states whether the va-
lue may be an empty string. There is a nul-
lable constraint as well, but it states if the
value may be null. In case of the phone at-
tribute we use a regular expression to vali-
date it (an optional plus sign at the begin-
ning and one or more digits). For the ema-

6 7

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

“under the hood” we can find widely used solutions:
Spring, Hibernate, Jetty, HSQLDB, SiteMesh.

Main station

il attribute we use a built-in e-mail address
validation. Plain addresses are not valida-
ted, that is why we do not put this attribu-
te in the constraints section (we should if
we wanted to change its order). After run-
ning the application again we can test the
validation. The validation messages are
not very clear (especially for the phone
number), but it works.

What next?
Grails and Groovy have been very popular
recently, so everyone interested in them
should not have any problems finding in-
formation about them, other program-

mers’ experiments, tips and add-ons. Be-
low is a short list of links which could be
used as a starting point:

Official Grails website – http://grails.org

Official Groovy website – http://groovy.
codehaus.org

Jacek Laskowski website – http://jacekla-
skowski.pl

Chlebik’s website – http://chlebik.word-
press.com

You can visit my blog http://tech.mrozew-
ski.pl in order to discuss Grails, find some
useful information e.g. contact.

Do you have any ideas how to improve
JAVA exPress?

mailto: kontakt@dworld.p l

Do you want to become an author?

mailto: kontakt@dworld.p l

Do you want to support us?

https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=95YEL6VHCR28A&lc=US&item_name=JAVA%20exPress&item_number=support¤cy_code=EUR&bn=PP%2dDonationsBF%3abtn_donateCC_LG%2egif%3aNonHosted

8 9

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

the�prOblemS�Of�larGe�J2ee�applicatiOnS

JarOSław�błąd

Main station

The problems of large internet applica-
tions J2EE can be generally divided into
two categories. The first consists of pro-
blems connected with the implemen-
tation of systems, the second – the pro-
blems that occur during use and mainte-
nance of systems. A lot has been already
said and written about the implementa-
tion of large systems, I will focus exclusive-
ly on the second group of problems, rare-
ly mentioned in the literature. My article
will be based on my experiences gained in
e-point company, concerning solving pro-
blems of maintaining and using big inter-
net applications.

At first let’s define, what is „large system”.

The basis criterion is the volume of users,
transactions and data. If one of the ele-
ments is big, then we can talk about lar-
ge system. Usually, although not necessa-
rily, there is also some level of system lo-
gic complication in large systems, so cal-
led business logic. Sometimes the size of
the system is perceived through the func-
tions it serves the final user. However, I
don’t think it is right. Google as a search
engine is a good example to prove it, as
its interface offers users little functionality
but surely we can’t say it is small system.
And finally: large system can be defined as
business-critical for a client, i.e. its failures
cause notable financial loss.

Now, let’s think, in which areas can occur
problems in large systems.

First of all, they can lie in the code of the
application. The second type of problems
concerns software application, which our
application has to use. These are problems
occurring in http servers, application se-

rvers, data base, MQ systems or outside
systems, with whom or system communi-
cates. Another areas of problems are ope-
rational system and network protocoles,
where can also hide some surprises, and
of course also hardware, on which eve-
rything operates, can also be a source of
problems.

The number of errors is falling according
to the presented hierarchy of system ele-
ments – the most of errors is in an applica-
tion, the least in hardware. However, the
closer to the hardware the problem is, the
more serious and harder to solve it beco-
mes.

When we know, where the problems can
occur, lets see, what can hurt us.

The first thing is the system stability.
Users expect that in longer period of time
a system will be carrying out certain bu-
siness functions, bringing potential bene-
fits. The unstable working system automa-
tically causes distrust of final users, and at
the same time is a reason for losing credi-
bility of system owner.

The next thing is performance. It is diffe-
rently viewed from the point of view of fi-
nal user than from the side ordering the
system. The final user expects mostly the
fastest response time. On the other hand,
the side ordering system will expect mo-
stly throughput, so the highest number of
business transactions in time unit. There-
fore, I propose to assume that the perfor-
mance means some kind of throughput
of the system with the accepted respon-
se time.

There is also something called system ava-

8 9

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

The number of errors is falling according
to the presented hierarchy of system elements – the most of

errors is in an application, the least in hardware.

Main station

ilability, describing how long the system is
available for users. It is connected mainly
with the stability and performance.

And two additional aspects: security,
whose importance is obvious, and system
administration. There are systems bu-
ilt is such a way that unables administra-
tion. With some system scale and load, or

large number of servers, clusters etc., the
administration of such system can be dif-
ficult, and costs of its maintenance extre-
mely high.

Comparing these two aspects, i.e. the are-
as of problems and its features, we get qu-
ite a big map of problems (Illustration 1).

Application Application so-
ftware

Operation sys-
tem/

system protocols

Hardware

Stability X X
Efficiency X
Availability X
Security X
Administartion X

Illustration 1. The area of problems

It is impossible in such a short article to
discuss the whole aboved mentioned map
of problems. Therefore I will present three
problems I came across in e-point.

I would like to begin with something gen-
tle, that is problems concerning concur-
rency of applications.

Assume that we have the system, which
works stable for a few months after imple-
mentation. Constantly there is more and
more users, and the load of system ele-
ments is bigger as well. However, it works
without bigger problems. Till one day. The
growing number of users causes the ap-
pearance of some problems – the system
freezes for couple of seconds, sometimes
for couple of minutes. Some of these cas-
es end with the total „death” of the sys-
tem and we must to restart the computer.
However, what is important, during such

„death” we can observe quite a big drop
of load on the processors, and we don’t
see a lot of operations I/O, neither in the
data base nor on the application server.

We begin to observe in the application
server – specifically in logs of the applica-
tion – exceptions with deadlocks, so the
information which is indirectly returned
by JDBC driver, that the data base detect-
ed a deadlock of transaction which had
been done, and that the transaction had
been rolled back. There are also the ex-
ceptions illustrating that JTA transactions
on the application server are timing out.
The analysis of the situation was not sim-
ple, but finally we managed to discover
what were the reasons for such condition.

First of all, it turned out that in two par-
ticular business transactions we had un-
favorable intertwinement of readings and
writings. It concerned the operations on

10 11

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

There are systems built is such a way
that unables administration.

Main station

the data base. Already this fact could lead
to deadlocks, but in this particular case it
had to be something more. It was the full
scan one of the table in the data base. The
table was occurring in both transactions.
When we were requested the reading of
one record, the optimizer considered it is
necessary to scan the whole table. Logi-
cally the operation of the optimizer was
correct. However, from the point of view
of performance it caused drastic drop of
concurrency, which caused blocking of the
key transactions..

When we discovered the cause of the
problem, it was not difficult to solve it. To-
gether with changing the application and
uploading on the product system it took
us several hours. However, the analysis it-
self and looking for the cause of the prob-
lem took us several days.

The solution was simple. We moved the
modifying operations at the end of these
transactions, which was possible from the
point of view of business requirements.
Then we prepared a special hint for data
base optimizer which caused that the
preferable way of access to the table was
the use of index, not the full scan of its
content.

Let’s sum up the problems of concurrency.

During studies we were said that when
we have problems with deadlocks, we
should just block resources in the estab-
lished sequence, and everything will get
back to normal, particularly there will be
no deadlocks. Unfortunately, this academ-
ic solution works only theoretically and it
is difficult to put in into practice, even in
small systems. Why? First of all, in a real

business system we are dealing with thou-
sands of transactions intertwining each
other, and each of them keep some re-
source – usually till several dozens. And,
what is worse, practically we don’t have
any control over blocking these resources,
because usually we operate on the data
base. If we want to select/take a line from
the table, usually we expect that only this
one will be locked. But it does not have to
be necessarily true. It can be a page of ta-
ble as well (lines in the data base take are
grouped usually in bigger units of data) or
even the whole table. If we have no con-
trol over it, it is absolutely not possible to
establish any sequence, because that’s
no use anyway. Sometimes it results also
from the business requirements that it is
not possible to turn some transactional
operations, which actually pins down the
academic approach towards the problem.

If it is so, what can we do in practice? We
can, above all, test the system with teh
help of real business scenarios. The point
is to observe the users’ activity after im-
plementation of the system, and with the
achieved data build business scenarios. In
such a way, after introducing changes in
the application or after extension of the
system, we can carry out certain scenarios
in a lab, overloading the system and ob-
serving all the parameters of concurrency,
i.e. what is happening in the data base
and on the application server. Extremely
important is also monitoring concurrency
parameters systematically during opera-
tion of the production system.

Another topic is contact with outside sys-
tems. Let me remind that we have the
stable, working for 2 years system. There

10 11

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

The solution was simple. We moved the modifying
operations at the end of these transactions

Main station

is no performance problems and the us-
ers are satisfied. At the client’s request we
implement a function confirming a trans-
action via SMS. After the implementation,
the system works stable for couple of
weeks and suddenly is unavailable for us-
ers. On our side, on every element of the
system a complete drop of load is visible.
In the system nothing is happening, if not
to mention front-end http server accept-
ing numerous failed requests. What we
can observe is the saturation of threats in
the application servers. All threats on the
server which could process requests are
in use Nothing is happening in logs. What
are we trying do do?

Because of the fact that on the first site
there is nothing we can draw conclusions
from, we decide to restart the system. The
system wakes up, but after 2 minutes is
dead again. We restart it once again and
the same thing happens. What helps is
removing SMS module. The system wakes
up and works correctly. We know already
where is the problem. It turned out that
the new functionality breaks something
dramatically. After analyzing the situation
we found out that the direct cause of the
problem was the unavailability of the SMS
gate. However the gate did not refused
the connection but simply everything
wasn’t working according to the requests
sent by us, which were simply frozen. TCP
timeouts on the level of the operational
system are very long, so during that time
nothing was able to break, so we had no
exceptions. The real source of the prob-
lem lied somewhere else. It resulted from
insufficient separation of our system and
the SMS gate. We expected certain sepa-

ration but it was not sufficient. In our so-
lution, when a user was making transac-
tion, his/her data were to be found in the
proper structure in the data base, and ad-
ditionally the SMS was in a separate table,
which then was read and sent by totally
asynchronous process. Unfortunately this
process caused locking writings to the ta-
ble with messages, which in case of prob-
lems with the SMS gate resulted in freez-
ing of the whole system.

What kind of solutions we can have in this
case?

Such problems it is solved usually through
the introduction of queuing. It can be for
example JMS. Moreover, it is necessary
to introduce timeouts with communica-
tion with such outside systems. Not only
on the logical level, but various, also on
the TCP level. However we could not use
queuing, so we had to use a trick with the
data base. We simply organized an access
to the data base in such a way that the
reading of messages table will not lock
any writings.

Contact with outside systems we are in-
tegrating or cooperating with, is the most
frequent cause of problems in large sys-
tems. Always, when in such interactions a
network is considered, a lot can happen.
Another examples of such contact points
are:

Data base – very often we think that data
base is the integral part of the system, but
looking from the point of view of the ap-
plication it is the same point of contact as
in case of backend system or a SMS gate.
Therefore we have to configure well ap-
propriate timeouts and half connections

12 13

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

Unfortunately, this academic solution works only
theoretically and it is difficult to put in into practice

Main station

parameters, in order to avoid friction du-
ring between application severs and the
data base.

E-mail servers – sometimes they are also
in bad condition, in their own specific way

Outside systems – modern built system
practically do not exist regardless other
outside systems. There is always some
other system – smaller or larger – taking
part in operation of our system.

Logging events subsystem – an interesting
fact is that it can also give us a hard time.
I know an example of application server,
which was logging events but when a log
was 2GB the server disappeared, i.e. JVM
disappeared and was not able to be swit-
ched on again. The solution was to clear
the log, but it took a lot of time to get to
this solution.

It seemed that threats does not saturate
so quickly, especially when we have a so-
lution of 10 virtual machines with 50 thre-
ats in each of them. It gives us 500 thre-
ats waiting to accept the request from the
Internet and serve the users. On the other
hand when there is simultaneously 100 re-
quests per second served, and individu-
al threats begin to block each other, it is a
matter of several seconds, sometimes two
minutes that all the threats will be blocked,
which will cause a complete freeze of the
system.

Summing up the discussion on the pro-
blems with outside systems, I would like
to focus on the layer of network. It will not
happen much here. TCP/IP heaps in opera-
tion systems, firewalls, routers, switches,
VPN canals for systems, with which we
integrate in a way... Everything can stop
working and usually in the at least expec-

ted moment. What is worse, it can fake to
work, which in case of network happens
quite often. Additionally there are other
damages, e.g. broken wire, which sticks
only a bit.

Another topic is memory in application
servers as an example of performance
restriction. Quite a straightforward exam-
ple. As usual I begin with the descrip-
tion of the idyll: we have a stable wor-
king system for several months, systema-
tically growing number of users, the sys-
tem is slightly more loaded, but it does not
make our life a misery. On the application
server there is 70% load of processor. Our
client is satisfied. However in moments
of increased activity we can observe alar-
ming symptoms. At first the respond time
of the system is longer and very often the-
re is maximal load of the processor on the
application servers, which sometimes cau-
se the freezing of the system. In logs we
do not observe anything unusual, so it se-
ems that they are classic symptoms of the
simple system overload. Java simply over-
load the processor and it should get more
power.

In such case we have two methods this
classic problem with efficiency of Java.
We can optimize it more than already the
optimized application, which needs chan-
ges in the source code and further tests.
Therefore it is a risk but above all it rises
further exploitation costs of the system,
which is often forgotten. The second solu-
tion is adding hardware, which seems easy
and unproblematic. It can be done quickly
– adding a new machine, installing suita-
ble software, adding a machine to cluster
and waiting for positive effects.

We chose the second solution. After ad-
ding some new hardware, a significant im-
provement has been observed, but not such

12 13

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

Luckily, modern applications have tendencies
to allocate a large number of objects
that are left for the garbage collector.

Main station

as we expected, so further than linear. We
analyzed the problem once again. If Java
had been the reason for the overload, we
began to observe thoroughly the work of
the virtual machine. And what were the
conclusions? The cause for the problem
was not the low processor performance,
but small amount memory for the applica-
tion, and because of that too frequent acti-
vating the garbage collecting process.

Luckily, modern applications have tenden-
cies to allocate a large number of objects
that are left for the garbage collector. With
every request we create a lot of objects and
then we expect that they will be nicely de-
stroyed. In case of the virtual machine,
with which we were dealing with, it wa-
sn’t so and the garbage collector had more
work to do. Actually, it was the processor
which was operating the garbage collec-
tion process instead of executing the appli-
cation code.

Which solution did we use? First of all we
extended the physical memory on servers
and we set up couple of virtual machines
on each of the physical servers. Why so?
Why didn’t we, for example, increase the
amount of memory on the virtual machi-
ne? The reason for that was the 32-bit ma-
chine and it was simply impossible to do.
On our operation system we could extend
the memory heaps only to 1600 MB, so
less than 2 GB. As we couldn’t do more,
we had to find a different solution.

As it is quite interesting example, I will
analyze it in details.

First of all: what is on the memory heap on
the application server where our applica-
tion is installed? Actually, there are two ty-
pes of objects. Long-lived objects, connec-
ted with the application server, users’ ses-
sion and cache memory, which are not de-

leted from the memory during the garbage
collection process, or it happens very ra-
rely, e.g. for a user’s session. On the other
hand we have short-lived objects, so gene-
rally all that are connected with every requ-
est sent to the server. These objects, practi-
cally with every call of the garbage collec-
tor are destroyed from the system memory.

What is crucial for the performance of
the whole system is the time of work de-
dicated for the garbage collecting process
(Garbage Collector time, GCtime variable)
and the time between each call of the gar-
bage collector (Allocation Failure Distan-
ce, AFdistance variable, defining how often it
is called).

How to define the load of the processor for
the application and for the garbage collec-
tor? In the first case we take the time of the
gargabe collecting (GCtime) and divide it
by the sum of garbage collecting time and
the gaps between calls of garbage collec-
tor (AFdistance), so the total time needed for
garbage collecting of memory and normal
work (see: Illustration 2).

Illustration 2.

In case of the application we have the op-
posite dependence, so we divide the time
the processor spares on the operation of
the application (AFdistance) by the time in
which the garbage collector is not working
(see: Illustration 3).

Illustration 3.

14 15

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

We will see if it is possible to guarantee the client
these successive nines in practice

Main station

When it comes to the garbage collecting
time, with rough approximation we can
say that it is directly proportional to the
size of the memory used by the long-lived
objects. At least such a dependency can be
observed for the algorithm mark and swe-
ep.

Illustration 4.

However the distance between particu-
lar calls of the garbage collecting process
(AFdistance) can be defined by subtracting
the size of the long-lived objects (LongLi-
vedObjectsSize) from the size of the heap
set on the server (HeapSize) and dividing
everything by the product of the number
of requests per seond (RPS) and the size
of short-lived objects generated by every
requests (ShortLivedObjectsSizePerRequ-
est). The dependecy is illustrated on illu-
stration 4.

Now, let’s go back to the example of our
application, which has the 2GB heap. We
assume that the application receives re-
quests. In our case, the memory for lon-
g-lived objects is about 700 MB, which is
less than 1/3 of our heap. For every requ-
est there is a bit over 1 MB. We set experi-
mentally that the time garbage collecting
time of the 1 MB heap will take 2-3 millise-

conds. On the basis of the earlier presen-
ted dependency we can set the time the
processor uses for application and for gar-
bage collecting process, which is presen-
ted on the illustration 5.

Illustration 5. The time the processor uses for appli-
cation and for garbage collecting process of memory.
Description: wykorzystanie procesora – the load of the
processor; liczba requestów na sekundę – the number of
requests per second

With 50 requests the garbage collecting
process takes 40% of the processing time,
so to put it mildly, there is not much left
for work of the application. And the trick is
to maximally flatten this curve. If we don’t
have possibilities to do anything in our vir-
tual machine (e.g. a change in the garbage
collecting algorithm or changing other
parameters), we simplest way is adding
some additional memory to make the
space for short-lived objects much larger.
And we did so.

At the end of this article I suggest to take
a look on the topic of availability, so the
mythical nines...

In some documentations for application
servers it is described how to achieve the
successive nines – the first, the second...
and even the eighth one! We will see if it is
possible to guarantee the client these suc-
cessive nines in practice, and if so – how.

The first nine - availability of the system
on the level of 90%. It means 73 hours
unavailability in month. So we have a lot
of time to repair something or even to buy
new hardware in the supermarket and in-
stall everything one again, or use a hosting

14 15

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

99,99% means less than 5 minutes unavailability
in month, so a bit impossible.

Main station

center. To create such a system, the team
doesn’t need to have advanced knowled-
ge, and it can be serviced by any admini-
strator. A piece of cake ;-)

Let’s see what will happen if we add the
second nine. Well, 99% of availability me-
ans a bit over 7 hours in reserve. It gets
complicated. Firstly, the hardware from
the supermarket is not enough. The ne-
cessary minimum we have to guarantee
is the standby server, prepared in such
a way that it can replace the potentially
broken one in the production system any
time. Because in fact we don’t have time
for reinstalling everything. The next thing
is to take care of the effective coopera-
tion of certain system elements, e.g. take
into account aspects of concurrency, inte-
ractions with other systems, so that eve-
rything will compose a whole. And finally:
such a level of availability needs to be su-
pervised 24/7. Is it then possible for one
administrator to fulfill such task? Let’s as-
sume that it is – there are some that wo-
uld deal with it alone, but certainly they
would need automatic mechanisms for
monitoring the system, necessary on this
level. However still, despite some difficul-
ties, two nines are not hard to achieve.

Let’s complicate it a little, adding another
nine. 99,9% of availability gives us 43 mi-
nutes in month for breakdowns. In my opi-
nion, this is the challenge only for profes-
sionals. First of all, a redundancy of the
hardware and both system and applica-
tion software is necessary. It means we ha
have to guarantee high availability clusters
– on http servers, application servers and
the data base servers. Naturally, it con-
cerns also the hardware – we have to have

guaranteed clustered switches, firewalls,
disk arrays etc. What we need is a preci-
se project and a precise implementation
of such system, because we cannot afford
a bigger breakdown. Another thing is the
analysis of the state before breakdown –
the system need to be monitored to re-
act quickly in case of any problem. What
is important is a permanent prevention
and not putting out “fire” in case of bre-
akdown. Additionally, we have to guaran-
tee experienced development and hosting
teams, who had dealt with such tasks be-
fore. They have to work and monitor the
system constantly and react quickly in
case on any breakdown symptoms. Mo-
reover we have to equip the administra-
tors with automatized repair procedures
and take into account that 43 minutes is
a very short time, and when we add stress
it turns out that a human cannot do much
apart from pressing the stop/start button.
However, the implementation of such but-
ton in large systems is not easy. Switching
off and on again all elements of the sys-
tem, which works on several dozens of
machines and is composed of 100 or 200
software elements, takes usually couple of
minutes, even if it’s well built. Moreover,
it is required to prepare the system for re-
configuration in the fly. It concerns the ap-
plication itself as well as its components
on which it operates. What’s more? Do-
uble monitoring will be needed, prefera-
bly monitoring of the monitoring. Altho-
ugh perhaps it is a requirement adequate
to the next nine. Summing up the topic of
three nines – speaking from my experien-
ce, it is possible.

And so we got to the fourth nine and he-

16 17

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

This means that problems (the equivalents of the
explosion of supernova) can happen every day

Main station

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

re...a surprise – I will not describe how
to achieve it, because I can’t do it myself.
99,99% means less than 5 minutes una-
vailability in month, so a bit impossible.
Unfortunately sometimes this is what the
clients expect, if not 100% availability and,
of course, for free. Such approach can be
understood. However it is surprising that
J2EE software suppliers promise not only
four but even more nines! In their docu-
mentations they present wonderful sce-
narios, large charts, extended diagrams
of various hardware, clusters and so on.
What they promise, is for me nothing but
an abstract idea.

Why then do I think that in practice it is
impossible? Because even the best ho-
sting centers provide nowadays the se-
rvices with 99,95% availability, so they le-
ave 21 minutes in reserve for breakdowns

on their side. And yet we
have to add the time for
the breakdowns on our
side. Therefore it is visi-
ble that not much can be
done, even if the compo-
nents are working on the
level of 99,99% availabili-
ty, so only a bit higher.

Let’s think how much wo-
uld cost each of the suc-
cessive nine? According
to the calculations made
in the USA, every next
nine increases the costs
of creating a system one
time, and double annual
costs of its maintaining.
According to my personal
calculations, this regula-

rity works in case of the first three nines.
Therefore the decision to make the system
available is a business decision, preceded
with detailed calculations. Each company
should calculate individually, how much it
can lose and how much it can save on the
more available system.

And finally the summing up.

There is a very popular opinion that THIS
cannot happen in our system, and the pro-
bability that THIS is going to happen is clo-
se to 0. There is nothing more wrong. Let’s
calculate this. In the medium internet sys-
tem there are about 500 hits per second,
each of the users downloading 10 ele-
ments – let’s say there are flash, graphics
etc. We have 3600 seconds in an hour, 24
hours in a day, 365 days in a year, and we
maintain the system for 5 years, becau-
se it is the average lifespan of the inter-
net system. The conclusion is that we have
about 800 billions of chances that some-
thing may go wrong. In the Milky Way, ac-
cording to the latest calculations, there is
400 billions of stars, so the big scale is very
adequate here. This means that problems
(the equivalents of the explosion of super-
nova) can happen every day.

The basic question is not what can hap-
pen but when it can happen. And we sho-
uld be prepared for this. I hope I managed
to present that in large systems we have
to deal with really big problems, but the-
re is also a great satisfaction when we are
able to overcome them. I thing there is a
lot of people with the experience as a de-
veloper, who will find such satisfaction so-
lving problems in such systems. I am such
a person.

Jarosław Błąd
e-point SA

Development Director
jaroslaw.blad@e-point.pl

Manages technical depart-
ment, organizes environment
for programmers, web deve-
lopers and hosting administra-
tors. Responsible for imple-
mentation of IT systems and
their technical maintenance.

Interested in IT systems imple-
mentation processes, develo-
pers’ team management and
relational databases.

16 17

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

Gmf�-�hOw�tO�create�a�Graphical�editOr�in�a�few�mOmentS

JaKub�JurKiewicz

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

It is widely known that a good drawing
can express more than a thousand words.
That is why data visualisation capability is
so important. Creating tools that allow us
to present data in a visual way has been
expensive and work-consuming. These
problems were the basis to create GMF
(Graphical Modeling Framework) which
is one of the projects developed under
the Eclipse project. As the name suggests
GMF is a technology to operate on a data
model in a graphical way. Working with
GMF consists mainly of creating and edi-
ting XML files (which can be done by using
special wizards and editors) and the resul-
ting graphical editor is generated automa-
tically and ready to use without any addi-
tional work. It is worth mentioning that
many options (e.g. zooming in and out,
Outline view, printing capability etc.) are
available “out-of-the-box” and it is not re-
quired to spend our time to implement
them. Figure 1 shows an editor created
using GMF. With the release of the newest
Eclipse Ganymede platform a new version
of GMF was released as well - 2.1 (and this
one will be presented in this article).exa

Figure 1. Screenshot showing an example
of an editor using GMF.

GMF components

The name of GMF can be easily divided
into two parts: the first one refers to gra-
phical operations, the second - modeling.
EMF (Eclipse Modeling Framework) is the
most often used for modeling in Eclipse
and that is why this technology is the base
of GMF. On the other hand GEF (Graphi-
cal Editing Framework) is used to do gra-
phical operations in Eclipse and is the base
for building a visual editor in GMF. Despi-
te the fact that GMF depends on EMF and
GEF, only little knowledge of these two is
required to start working with GMF. Only
when creating advanced editors you have
to know EMF and GEF better. In this artic-
le we will focus on GMF components (if
it is possible), leaving out the details of
the other technologies on which GMF de-
pends.

How does it work - a bit of theory

Before moving to a concrete example it
would be good to get to know with com-
ponents of GMF - a diagram with depen-
dencies of the components is shown on fi-
gure 2.

To start working a model is needed on
which we will operate. Model has to be
defined in the form of an ecore file, which
is later used to create other elements. If
creating this file directly is too difficult
we can use an editor from GMF which al-
lows us to create a model in a visual way
(a screenshot of this editor is shown on fi-
gure 2). To use this feature right click on
the select ecore file in the Package Explo-

18 19

GMF is a technology
to operate on a data model

in a graphical way.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

rer view and choose Initialize ecore_dia-
gram diagram file from the menu - it will
generate a file with an ecore_diagram
extension, which we could edit in a visu-
al way (and the changes will be propaga-
ted to the right ecore file). When our mo-
del is ready we need a genmodel file from
which we will generate the code of our
model and edit project. At this point our
work with the model is done and we start
working with standard GMF elements. We

generate gmfgraph file from the ecore file
- it will contain the definitions of graphical
elements which will appear in our editor.
To put the defined elements in the editor
we need appropriate tools available on
the editor palette - we define them in a
gmftool file, which also is generated from
the ecore file. After that we have to con-
nect all these elements together - this is
done in a gmfmap file (in this file we defi-
ne e.g. which model element is to be cre-

Listing 1

<?xml version=”1.0” encoding=”UTF-8”?>
<ecore:EPackage xmi:version=”2.0”
 xmlns:xmi=”http://www.omg.org/XMI” xmlns:xsi=”http://www.w3.org/2001/
XMLSchema-instance”
 xmlns:ecore=”http://www.eclipse.org/emf/2002/Ecore” name=”company”
 nsURI=”gmf.example” nsPrefix=”gmf.example”>
 <eClassifiers xsi:type=”ecore:EClass” name=”Company”>
 <eStructuralFeatures xsi:type=”ecore:EAttribute” name=”companyName”
eType=”ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures xsi:type=”ecore:EReference” name=”employees”
upperBound=”-1”
 eType=”#//Employee” containment=”true”/>
 <eStructuralFeatures xsi:type=”ecore:EReference” name=”ownedComputers”
upperBound=”-1”
 eType=”#//Computer” containment=”true”/>
 </eClassifiers>
 <eClassifiers xsi:type=”ecore:EClass” name=”Manager” eSuperTypes=”#//
Employee”>
 <eStructuralFeatures xsi:type=”ecore:EReference”
name=”managedDevelopers” upperBound=”-1”
 eType=”#//Developer”/>
 </eClassifiers>
 <eClassifiers xsi:type=”ecore:EClass” name=”Employee”>
 <eStructuralFeatures xsi:type=”ecore:EAttribute” name=”name”
eType=”ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString”/>
 <eStructuralFeatures xsi:type=”ecore:EReference” name=”usedComputers”
eType=”#//Computer”/>
 </eClassifiers>
 <eClassifiers xsi:type=”ecore:EClass” name=”Computer”>
 <eStructuralFeatures xsi:type=”ecore:EAttribute” name=”name”
eType=”ecore:EDataType http://www.eclipse.org/emf/2002/Ecore#//EString”/>
 </eClassifiers>
 <eClassifiers xsi:type=”ecore:EClass” name=”Developer” eSuperTypes=”#//
Employee”/>
</ecore:EPackage>

18 19

The main component of GMF is the model
stored in the ecore file

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

ated with the selected tool and what gra-
phical element should represent it). Next
a gmfgen file is generated from gmfmap in
which we can set some properties of the
editor. When the gmfgen file is ready we
can generate editor’s code as an Eclipse
plugin.

Figure 2. A diagram with dependencies of
GMF components.

Creating an editor

After a theoretical introduction it is time
to try creating an editor using GMF. To
use GMF it has to be installed in Eclipse.
As GMF is a part of Eclipse Ganymede, we
can easily download it using P2. Select
Help -> Software updates... from the main
menu. Open the Available Software in the
window tab and expand the Ganymede
Update Site node, check the Models and
Model Development category and select
Graphical Modeling Framework SDK. Click
the Install... button in the upper right win-
dow corner and after a little while we will
be asked for confirmation, click Next, on
the next page accept the license (I accept
the terms of the license agreement) and
click Finish. Eclipse will ask to restart the

environment, click Yes and GMF should
be a part of our IDE. We can start working
after successfully installing GMF. Let us
start with creating a new project by selec-
ting File -> New -> Project from the main
menu and choosing New GMF Project
from the list of available projects. Give a

name of the project in
the wizard (gmf.exam-
ple in this article) and
click Finish. The main
component of GMF is
the model stored in
the ecore file, that is
why the first step to
create an editor is to
define a model, which
we would like to edit.
Our model will be qu-

ite simple for the sake of learning, not to
complicate things. Our model is shown on
listing 1 as an ecore file. In order to use it,
create a new file with the ecore extension
under the model directory (company.eco-
re). We should see an error message that
the file is invalid, but do not worry about
this fact. Open the file in text mode (in the
Package Explorer view from the context
menu select Open With -> Text Editor).

Type or paste the contents of the listing
into the opened editor, save the file and
model is ready as an ecore file (it is worth
opening the ecore file in the Sample Ecore
Model Editor). It would be good to know
the model, because it will be needed la-
ter in the article. To continue the work we
will need a model as Java code and an edit
project (which allows us to easily opera-
te the model). That is why we will gene-
rate a genmodel file from the ecore file -

20 21

Let us start with the visual side of our editor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

EMF Model wizard available under File ->
New -> Other -> Eclipse Modeling Frame-
work -> EMF Model. Give a name of the
file (company.genmodel) and select that it
should be created in the model directory
of our project. By clicking Next we move
to the page on which we select the type
of our model (in our case Ecore model).
On the next page give the path to the mo-
del file - it is best to click Browse Work-
space and select the company.ecore file.
Click Next and Finish - company.genmodel
file should appear in the model directory.
Open the file created by the wizard and
right clicking the top element select the
options: Generate Model Code and Gene-
rate Edit Code. Now it is time to leave out
EMF and use GMF exclusively.

Figure 3. A page of the graphical definition
wizard showing which model elements
will be shown.

Let us start with the visual side of our edi-

tor. Right click on the ecore file and select
New -> Other -> Simple Graphical Defini-
tion Model from the context menu (Gra-
phical Modeling Framework category).
Give the name - e.g. company.gmfgraph
- in the wizard (it is best to put the file in
the model directory so all elements of our
editor would be in one place) and click
Next. On the next page select the element
which will be a container for all the ele-
ments - in our case Company and click
Next. After that select the elements from
the model which are to be shown. At this
time we want to create Manager and Em-
ployee objects as well as links between
them and their names (the result of this is
shown on figure 3). After selecting the ne-
eded options we close the wizard by clic-
king Finish.

It is easy to notice a new file in the mo-
del directory, with a gmfgraph extension.
It would be good to take a look at its con-
tents, because all changes regarding the
graphical elements of our editor will be
done there.

The next step is defining the tools which
will be available on the editor’s palette.
In order to do this, right click on the eco-
re file and select New -> Other... -> Sim-
ple Tooling Definition Model (Graphical
Modeling Framework category). Give the
name of the file - e.g. company.gmftool (it
is best to put the file in the model directo-
ry as before) and click Next. Again choose
what is the container for our editor (Com-
pany) and move to the next page. The
last step of the wizard allows us to defi-
ne which model elements should have to-
ols created on the palette. We want to add

20 21

The next step is defining the tools

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

Manager, Employee elements and links be-
tween them, so the result should look like
figure 4. Click Finish to close the wizard.

Figure 4. A page of the tool defini-
tion wizard showing for which mo-
del elements tools will be created.

Having the model, graphical elements de-
finitions and tools, we have to connect
them all together. Right click on the eco-
re file and select New -> Other -> Gu-
ide Mapping Model Creation (Graphi-
cal Modeling Framework category). As
with the other wizards, give the name of
the file storing the mapping definitions -
e.g. company.gmfmap (again it is best to
save it in the model folder). On the se-
cond page select the container (Compa-
ny) and click Next. After that select the to-
ols definition; click the Browse Workspa-
ce... button, choose the gmftool file and
click Next. The last page is the most im-
portant one, because it allows us to de-

fine which elements will be the nodes in
our editor and which will be links. Remo-
ve Computer (Manager; ownedCompu-
ters) from the Nodes section and used-
Computers : Computer (ManagerMana-
gedDevelopers; <unspecified> from the
Links section; the page should look like on
figure 5. Click Finish to close the wizard.

Figure 5. A page of the wizard sho-
wing nodes, links and attributes.

We have to look into the generated gmf-
map file and check (in the Properties view)
whether Diagram Label attribute is set for
the Feature Label Mapping elements. If
they are not set (the wizard does not al-
ways guess are intentions) we will have
to enter the following values for them:

·	 Diagram Label DeveloperName for
the element of that type under the
Node Mapping <Developer/Deve-
loper> node

·	 Diagram Label ManagerName for
the element under the Node Map-
ping <Manager/Manager>

We can check if the right tools match the
right elements:

22 23

The mapping is ready

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

·	 Node Mapping <Developer/Deve-
loper> node should have the attri-
bute Tool set to Tool Developer

·	 Node Mapping <Manager/Mana-
ger> node should have the attribu-
te Tool set to Tool Manager

·	 Link Mapping node should have
the attribute Tool set to Tool Mana-
gerManagedDevelopers

The mapping is ready, we only have to ge-
nerate the generator model. Right click on
the gmfmap file and select Create genera-
tor model... Give the name of the file - e.g.
company.gmfgen (again select model as
the destination folder), click Next until the
last page and close the wizard clicking Fi-
nish.

Now we can generate the code of our
editor. Right click the gmfgen file and se-
lect Generate Diagram Code. A new pro-
ject should appear in our workspace. It
contains the code of the editor as a plu-
gin. In order to test our editor we have
to run Eclipse with that plugin (as well as
with the plugin containing our model and
edit plugin). Click Run -> Run Configura-
tions from the main menu, select Eclipse
Application from the list on the left side
and click New launch configuration. A new
configuration is created which allows us to
run a new instance of Eclipse with selec-
ted plugins (we will not get detailed abo-
ut it here). Type in the name of our confi-
guration and check if our plugins are se-
lected on the Plug-ins tab. Apply the chan-
ges and run our new configuration. Create
a new project in the new Eclipse instance,
right click on the project and select New ->

Other -> Company Diagram (we can chan-
ge that name). Give the name of the file
and click Finish. Our editor should open in
which we could add new elements from
the palette on the right side (figure 6).

Figure 6. A screenshot of the editor right
after generating it.

Adding new elements

We managed to create a fully functio-
nal editor in a short time without writing
a single line of code. Instead we created
and edited a few XML files (using wizards
and editors simplifying this task). Now it is
time to do something without wizards - let
us add the capability to create new Com-
puter elements (again we will not write
any code).

Let us think for a moment - where will
we make changes? First, we have to de-
fine new graphical elements (gmfgraph
file modification). Second, we have to add
new tools to the palette (gmftool file mo-
dification). Third, we have to map mo-
del elements to the graphical elements
and show which tool will be used to cre-
ate those elements (gmfmap file modifica-

22 23

Let us think for a moment

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

tion). Knowing that we can start working.
Let us start new graphical elements. After
opening the gmfgraph file we will see that
the main element is Canvas. Its contents
are:

·	 shapes available in the application
(Figure Gallery Default node)

·	 nodes - graphical representation of
model elements

·	 diagram labels - nodes labels

·	 connections - lines showing rela-
tions between model elements.

Let us assume that we want Computer ele-
ments be displayed as ellipses. Let us de-
fine their appearance first: begin with cre-
ating a figure descriptor which will contain
all information about our new figure. In or-
der to do this right click on the Figure Gal-
lery Default and select New Child -> Figu-
re Descriptor. A new node will be created
which we will name in the Properties view
(e.g. ComputerFigureDescriptor). Now
we have to define our figure appearance
(even many base figures). Right click on
the newly created descriptor and select
New Child -> Ellipse. Give the new node
a name e.g. ComputerEllipse and change
other properties if you like. We would like
that the figure had a label, so right click on
the ComputerEllipse and select New Child
-> Label. Let us name it ComputerName-
Label. We have to create an access rule to
the label in order to refer the label later
(we will see the usage for that) - right click
on the ComputerFigureDescriptor and se-
lect New Child -> Child Access. Select the
element which we would like to have the
access to in the properties - in our case

the Figure property set to ComputerNa-
meLabel. The appearance of the figure is
defined, now we have to create a node
definition for it. Right click on the Canvas
and select New Child -> Nodes Node. Give
a name for the new node (e.g. Computer-
Figure) and connect it with our figure by
giving the name of the figure descriptor
(ComputerFigureDescriptor) as the Figu-
re property. Create a diagram label node
for the created label, so the editor would
be «aware» that we want to display it. Ri-
ght click Canvas and select New Child ->
Labels Diagram Label. Give it a name (e.g.
ComputerName) and connect it with a fi-
gure descriptor like previously. The access
rule is useful now - set the Accessor pro-
perty to Child Access getFigureComputer-
NameLabel.

The graphical definition is ready, we can
define the tools which we would like to
add (in our case we would like to add
Computer elements, so we need one nie
tool on the palette). Open the gmftool file,
right click on the Tool Group node and se-
lect New Child -> Creation Tool from the
menu. Give a name for the new node (Ti-
tle attribute), e.g. ComputerTool and a de-
scription. We have to define icons for our
element which will appear on the palet-
te and in the editor - default (in our case)
or selected by us. In order to add default
icons right click the newly created node
and select New Child -> Large Icon Default
Image as well as New Child -> Small Icon
Default Image. That is the end of gmftool
file modifications.

The last piece of work to do is to connect
the model, the graphical definition and to-

24 25

The last piece of work to do is
to connect the model,

the graphical definition and tools

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

ols which means modifying the gmfmap
file. After opening it we will see that the
main node is called Mapping and stores all
defined mappings. We will add a Top Node
Reference mapping because it concerns
the top node of the editor. Right click Map-
ping and select New Child -> Top Node Re-
ference. In this new node we have to set
where to store the element represented
by the node (Containment Feature attribu-
te). In our case it will be ownedComputer.
After that right click the new node and se-
lect New Child -> Node Mapping and the-
re we set the mapping details: Element at-
tribute - element from the model (Compu-
ter), Diagram Node attribute - node name
from the graphical definition (ComputerFi-
gure), Tool attribute - tool name defined in
the gmftool file (ComputerTool). We wo-
uld also like to display Computer name as
a label, so we right click on the node and
select New Child -> Feature Label Map-
ping. We have to set the Features attribu-
te to name for the new node (because this
Computer attirbute we would like to di-
splay) and Diagram Label property should
point to the diagram label defined in the
gmfgraph file (ComputerName).

That is the end of our work. Now it is time
to regenerate gmfgen file, editor code ba-
sed on that and check whether our editor
works as we expected. The result of our
work is shown on figure 7.

Summary

Basic capabilities of the GMF project were
presented in this article as well as how easi-
ly and quick one can create a fully functio-
nal graphical data model editor. GMF fe-

atures are of course broader, that is why
I encourage to get familiar with samples
and tutorial available on the internet and
experiment with the technology.

Figure 7. A screenshot showing the editor
after changes.

Internet
·	 GMF home page: http://www.ec-

lipse.org/gmf/

·	 GMF tutorial: http://wiki.eclipse.
org/index.php/GMF_Tutorial

·	 GMF FAQ: http://wiki.eclipse.org/
Graphical_Modeling_Framework_FAQ

·	 GMF in 15 minutes: http://www-
128.ibm.com/developerworks/opensour-
ce/library/os-ecl-gmf/

·	 Article about an additional GMF
view: http://eclipser-blog.blogspot.
com/2007/06/gmf-project-in-5-minutes-
with-gmf.html

·	 A collection of posts about EMF:
http://eclipse-po-polsku.blogspot.com/
search/label/EMF

24 25

J2me:�ObJectS�SerializatiOn

adam�dec

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

Environment setup and project cre-
ation

The utility used to build our projects will
be, of course, Maven 2.x [1]. To make it a
little more sophisticated, we will use ma-
ven-antrun-plugin in the source genera-
tion phase (generate-sources). Ant’s re-
sponsibility will be to generate code using
org.castor.anttask.CastorCodeGenTask
class.

Before going further, I would like to re-
commend reading an excellent article
about Maven that was published in the se-
cond issue of Java Express, Dec 2008 (Ma-
ven 2 – how to make work easier, pt I. Ra-
fał Kotusiewicz).
Let us create two projects:

1. CastorSourceGenerator

2. CastorMsgFactoryME

They may be created either from the com-
mand line or by using an Eclipse plugin
(M2 [3]). However, I strongly recommend
using the following commands:

mvn archetype:create -DgroupId=com.
sonic.gen -DartifactId=CastorSource-
Generator

mvn archetype:create -DgroupId=com.
sonic.factory -DartifactId=CastorMsg-
FactoryME

Maven creates two directories named
exactly as the values given in artifactId pa-
rameter. Both directories contain default
project structure that includes some Hel-
loWorld classes:

src/main/java/com/sonic/gen/
App.java

src/test/java/com/sonic/gen/
TestApp.java

and POM (Project Object Model) file who-
se sample content is shown in the listing 1.

If you want to import templates as a pro-

Listing 1. Sample pom.xml

<project xmlns=”http://maven.apache.org/POM/4.0.0”
 xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
 xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd”>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.sonic.factory</groupId>
 <artifactId>CastorMsgFactoryME</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>CastorMsgFactoryME</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

26 27

The utility used to build our projects will be,
of course, Maven 2.x

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

ject in Eclipse, then in each of the directo-
ries (CastorSourceGenerator, CastorMsg-
FactoryME, CastorTester), you should in-
voke the command:

mvn eclipse:eclipse or mvn idea:idea if
you are using IntelliJ environment.

Picture 1. Projects structure in Eclipse 3.5M3

In the first case two files will be created:
.project and .classpath. Also, a new
target directory will be created and mvn-
eclipse-cache.properties file in it.

Having our templates imported as Java
projects in Eclipse (File -> New -> Java
Project... -> Create project from existing
source), we should get project structure
shown in the picture 1.

First of all, take a look at the
CastorSourceGenerator project. Let us
create MySourceGenerator class, that will
control the default way in which the output
code is generated. The fully qualified
name of this class should be given as the
value of org.exolab.castor.builder.

jclassPrinterTypes attribute in the
castorbuilder.properties file. The class
should implement org.exolab.castor.

builder.printing.JClassPrinter
interface; you can find an example how

Listing 2. JClassPrinter implementation

package org.exolab.castor.builder.printing;

import org.exolab.javasource.JClass;
import org.exolab.javasource.JComment;

public class WriterJClassPrinter implements JClassPrinter {
 public void printClass(final JClass jClass, final String outputDir,
 final String lineSeparator, final String header) {

 // hack for the moment
 // to avoid the compiler complaining with java.util.Date
 jClass.removeImport(„org.exolab.castor.types.Date”);

 // add header
 JComment comment = new JComment(JComment.HEADER_STYLE);
 comment.appendComment(header);
 jClass.setHeader(comment);

 // print
 jClass.print(outputDir, lineSeparator);
 }
}

26 27

it would be a good idea to make a copy of this directory

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

to do it in org.exolab.castor.builder.
printing.WriterJClassPrinter (see the
listing 2). We will use WriterJClassPrinter
class as a template for building our own
implementation.

Rename App.java file to
MySourceGenerator.java, delete the
unimportant stuff and add JclassPrinter
implementation to this class. Most of the
classes that we are going to use are located
in org.exolab.javasource package
and their names reflect very well their
purposes. So, in order to create a method,
create JMethod object. If you want to add
parameter to an object, create JParameter
object.

1. At this stage do not worry if the project
is not compiling yet. It is time to downlo-
ad Castor sources (note that it must be
version 1.2!) [4]. Now, go to the codegen
directory (before that it would be a good
idea to make a copy of this directory, e.g.
codegen-me). We will change three files:
Jtype.java, CollectionMemberAndAc-

cessorFactory.java and SourceFacto-
ry.java.

Now, keeping in mind how signatures
of serialization/deserialization methods
look like:

public void write(final java.io.Data-
OutputStream dos) throws java.io.IO-
Exception

public void read(final java.io.Data-
InputStream dis) throws java.io.IO-
Exception

we should add the following declarations
in org.exolab.javasource.JType class:

/** JType instance for a void (void).
*/

public static final JPrimitiveType
VOID = new JPrimitiveType(„void”,
„void”);

 /** JType for a DataInputStream. */

public static final JPrimitiveType
DATA_INPUT_STREAM = new J P r i -
mitiveType(„java.io.DataInputStre-
am”, „java.io.DataInputStream”);

/** JType instance for a DataOutput-
Stream. */

public static final JPrimitiveType
DATA_OUTPUT_STREAM = new J P r i -
mitiveType(„java.io.DataOutputStre-
am”, „java.io.DataOutputStream”);

2.Find org.exolab.castor.builder.
factory.CollectionMemberAndAcces-

sorFactory class. What is particular-
ly important is to remember the code
that was generated for collections such
as java.util.Vector and java.util.Ha-
shtable should call only methods that in
J2ME API [5]. Except for the public syn-
chronized Object clone(); method, al-
most all methods from Java 1.1 [6] are
included in CLDC 1.1 (JSR 139).

Also, you should make sure that the re-
sulting output code contains calls only to
methods from the following table:

J2ME
void addElement(Object obj)
Object elementAt(int index)
void insertElementAt(Object obj, int
index)
Enumeration elements()
void removeAllElements()
boolean removeElement(Object obj)
void removeElementAt(int index)
void setElementAt(Object obj, int
index)

3.1 First change will be in the method:
private void createGetAsArrayMetho-
d(final CollectionInfo fieldInfo,

28 29

At this stage do not worry if the project is not compiling yet

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

 final JClass jClass, final boolean
useJava50,

 AnnotationBuilder[] annotationBu-
ilders) { ... }

According to JSR 139 in the class java.
util.Vector there is no such method as
Object[] toArray() and Object[] toAr-
ray(Object[] a).

It means that we should either get rid of
createGetAsArrayMethod(...) method
body or look for:

private void createGetAndSetMethods
(final CollectionInfo fieldInfo,
final JClass jClass,
final boolean useJava50,
final AnnotationBuilder[] annotation-
Builders) { ... }

and remove the line:

this.createGetAsArrayMethod(
fieldInfo, jClass, useJava50, annota-
tionBuilders);

3.2 The same operation should be done
in the following methods:

private void createGetAsReferenceMe-
thod(final CollectionInfo fieldInfo,

 final JClass jClass) { ... }

private void createSetAsReferenceMe-
thod(final CollectionInfo fieldInfo,

 final JClass jClass, final boolean
useJava50) { ... }

private void createSetAsCopyMethod(
final CollectionInfo fieldInfo,

 final JClass jClass) { ... }

In my case all the implementations of the-
se methods were removed and create-
GetAndSetMethods method looks now as
shown below:

private void createGetAndSetMethods(
final CollectionInfo fieldInfo,
final JClass jClass, final boolean
useJava50, final AnnotationBuilder[]
annotationBuilders) {

 this.createGetByIndexMethod(fiel-
dInfo, jClass);

 this.createSetByIndexMethod(fiel-
dInfo, jClass);

}

3.3 The next change is done in:
protected void createGetByIndexMethod(
final CollectionInfo fieldInfo, final
JClass jClass) { ... }

In the line:

String value = fieldInfo.getName() +
„.get(index)”;

the word get should be replaced with
elementAt and this results in:

 String value = fieldInfo.getNa-
me() + „.elementAt(index)”;

So, what we did here was replacing Object
get(int index); with Object elementA-
t(int index);

3.4 Now, look for the following method:
protected void createAddByIndexMetho-
d(final CollectionInfo fieldInfo,

 final JClass jClass) { ...)

The following piece of code:

sourceCode.append(fieldInfo.
getName());
sourceCode.append(„.add(index, „);
sourceCode.append(fieldInfo.
 getContentType().
 createToJavaObjectCode(parameter.
getName()));
sourceCode.append(„);”);

void add(int index, Object element)

should be replaced with this one:

28 29

In my case all the implementations of these methods
were removed

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

sourceCode.append(fieldInfo.
getName());
sourceCode.append(
 „.insertElementAt(„);
sourceCode.append(fieldInfo.
 getContentType().
 createToJavaObjectCode(parameter.
getName()));
sourceCode.append(„, index);”);

void insertElementAt(Object obj, int
index)

3.5 Remove the body of this method:
protected void createIteratorMethod(
final CollectionInfo fieldInfo, fi-
nal JClass jClass, final boolean
useJava50) { ... }

And the fragment of this method imple-
mentation:

private void createRemoveAllMethod(
final CollectionInfo fieldIn-
fo, final JClass jClass) { ... }
sourceCode.append(„.clear();”);

should be replaced wtih

sourceCode.append(„.removeAllEle-
ments();”);

This means replacing void clear(); with
void removeAllElements();

3.6 Replace the body of the method:
protected void
createRemoveByIndexMethod(final
CollectionInfo fieldInfo, final JClass
jClass) { ... }

Below there is the piece of code to be re-
placed:

JMethod method = new JMethod(„remove” +
fieldInfo.getMethodSuffix() + „At”,
 fieldInfo.getContentType().getJType(),
 „the element removed from the
 collection”);
method.addParameter(new JParameter(
 JType.INT, „index”));
JSourceCode sourceCode = method.
 getSourceCode();
sourceCode.add(„java.lang.Object obj =
this.”);
sourceCode.append(fieldInfo.getName());

sourceCode.append(„.remove(index);”);
if (fieldInfo.isBound())
 this.createBoundPropertyCode(fieldInfo,
sourceCode);

sourceCode.add(„return „);
if (fieldInfo.getContentType().getType()
== XSType.CLASS) {
 sourceCode.append(„(„);
 sourceCode.append(method.
 getReturnType().getName());
 sourceCode.append(„) obj;”);
} else {
 sourceCode.append(fieldInfo.
 getContentType().
 createFromJavaObjectCode(„obj”));
 sourceCode.append(„;”);
}

jClass.addMethod(method);

And here you can see how it should look
after the operation:

JMethod method = new JMethod(„remove” +
fieldInfo.getMethodSuffix() + „At”, Jtype.
VOID, „the element removed from the
collection”);
method.addException(SGTypes.
INDEX_OUT_OF_BOUNDS_EXCEPTION, „if the
index given is outside the bounds of the
collection”);
method.addParameter(new JParameter(
 JType.INT, „index”));
JSourceCode sourceCode = method.
 getSourceCode();
this.addIndexCheck(fieldInfo, sourceCode,
method.getName());
sourceCode.add(„this.”);
sourceCode.append(fieldInfo.getName());
sourceCode.append(„.removeElementAt(
 index);”);
if (fieldInfo.isBound())
 this.createBoundPropertyCode(fieldInfo,
sourceCode);
jClass.addMethod(method);

Briefly, all the calls to: Object remove(int
index) are changed to calling:

void removeElementAt(int index)

And this.addIndexCheck(...)will add a
short piece of code:

// check bounds for index
if (index < 0 || index >= this.VECTOR
.size()) {

throw new IndexOutOfBoundsExceptio-
n(„getElement: Index value ‚” + index +

30 31

Huh, this was the last ‘replacement operation’!:)

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

„’ not in range [0..”
+ (this.VECTOR.size() - 1) + „]”);
}

3.7 The next replacement concerns the
method:
private void createRemoveObjectMetho-
d(final CollectionInfo fieldInfo, final
JClass jClass) { ... }

In its body we replace the line

sourceCode.append(„.remove(„);

with

sourceCode.append(„.removeEle-
ment(„);

3.8 Remove the body of the method:
private void createSetAsArrayMetho-
d(final CollectionInfo fieldInfo, fi-
nal JClass jClass, final boolean use-
Java50) { ... }

3.9 The last change should be done in
the method:
protected void createSetByIndexMetho-
d(final CollectionInfo fieldInfo, final
JClass jClass) { ... }

In this method we change: Object se-

t(int index, Object element) into: void
setElementAt(Object obj, int index)

and the following code should be repla-
ced:

JMethod method = new JMethod(„set” +
fieldInfo.getMethodSuffix());
method.addException(SGTypes.
INDEX_OUT_OF_BOUNDS_EXCEPTION, „if the
index given is outside the bounds of the
collection”);
method.addParameter(new JParameter(
 JType.INT, „index”));
method.addParameter(new Jparameter(
fieldInfo.getContentType().getJType(),
fieldInfo.getContentName()));
JSourceCode sourceCode = method.
 getSourceCode();
this.addIndexCheck(fieldInfo, sourceCode,
method.getName());
sourceCode.add(„this.”);
sourceCode.append(fieldInfo.getName());

sourceCode.append(„.set(index, „);
sourceCode.append(fieldInfo.
 getContentType().
 createToJavaObjectCode(fieldInfo.
 getContentName()));
sourceCode.append(„);”);
if (fieldInfo.isBound())
 this.createBoundPropertyCode(fieldInfo,
sourceCode);

jClass.addMethod(method);

with:

JMethod method = new JMethod(„set” +
fieldInfo.getMethodSuffix(), JType.VOID,
„the element added to the collection”);
method.addException(SGTypes.
INDEX_OUT_OF_BOUNDS_EXCEPTION, „if the
index given is outside the bounds of the
collection”);
method.addParameter(new JParameter(
 JType.INT, „index”));
method.addParameter(new JParameter(
 fieldInfo.getContentType().getJType(),
 fieldInfo.getContentName()));
JSourceCode sourceCode = method.
 getSourceCode();
this.addIndexCheck(fieldInfo, sourceCode,
method.getName());
sourceCode.add(„this.”);
sourceCode.append(fieldInfo.getName());
sourceCode.append(„.setElementAt(„);
sourceCode.append(fieldInfo.
 getContentType().
 createToJavaObjectCode(fieldInfo.
 getContentName()));
sourceCode.append(„, index);”);
if (fieldInfo.isBound())
 this.createBoundPropertyCode(fieldInfo,
 sourceCode);
jClass.addMethod(method);

3.10 Short explanation

The list of classes which can be used to ge-
nerate source code can be found here:

http://www.castor.org/1.3/javadoc/org/
exolab/javasource/package-summary.
html

What we are now looking for is the org.
exolab.castor.builder.factory.Sour-

cefactory class in which there should be
private void initialize(final JClass

jClass) { ... } method. The only thing
to do is to comment out the following line

http://www.castor.org/1.3/javadoc/org/exolab/javasource/package-summary.html
http://www.castor.org/1.3/javadoc/org/exolab/javasource/package-summary.html
http://www.castor.org/1.3/javadoc/org/exolab/javasource/package-summary.html

30 31

Before we start testing our library, we need some test data.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

in this method:

jClass.addInterface(„java.io.Seria-
lizable”);

We are doing this since we do not want
this interface to be added to each newly
created class because, as I have already
mentioned this, interface does not exist in
Java ME. Instead of it, we will use some-
thing different:

de.enough.polish.io.Externalizable

Huh, this was the last ‘replacement ope-
ration’!:)

Now, let us edit pom.xml file: change its ar-
tifact name to castor-codegen and add
version element:

<version>1.2.1</version>.

Then, we should invoke the command in
the shell: mvn clean install.

The artifact should be installed in our local
repository (in the directory

M2_REPO/repository/org/codehaus/ca-

stor/castor-codegen/1.2.1/) and it sho-
uld be added as a dependency to the
pom.xml:

<dependency>
 <groupId>org.codehaus.castor
 </groupId>
 <artifactId>castor-codegen
 </artifactId>
 <version>1.2.1</version>
</dependency>

If you have M2 plugin installed in Eclipse,
simply click the right mouse button on the
project and select Enable dependency ma-
nagement. In that way all the dependen-
cies from pom.xml will appear in our clas-
spath (Picture 2).

The project should now compile success-
fully and it can be installed in your local re-
pository:)

4. It is high time to implement the me-
thod:

public void printClass(
final JClass jClass, final String
outputDir, final String lineSepara-
tor, final String header) { ... }

Picture 2. Java Build Path

which will add to the already generated
class (JClass object) the additional code
(the method)

modifiedClass.addMethod(someMethod)

and some comment:

modifiedClass.setHeader(someComment)

The following code should be generated:

public void read(DataInputStream dis)
throws IOException {

this.name = dis.readUTF();
this.myObject2 = (MyObject2)de.enough.
polish.io.Serializer.deserialize(dis);

}

Step 1. Let us create a method signature:

JMethod readMethod = new JMethod(
 „read”);
JModifiers readMethodModifiers =
 new JModifiers();

32 33

Files generation will be started by using Maven

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

readMethodModifiers.makePublic();
readMethod.setModifiers(
 readMethodModifiers);
JParameter readMethoParameter =
 new JParameter(JType.
 DATA_INPUT_STREAM, „dis”);
readMethod.addParameter(
 readMethoParameter);
readMethod.addException(new JClass(
 „java.io.IOException”), „”);

...I will leave it without a comment :)

Step 2. Create method body:

JField[] fields = modifiedClass.
 getFields();
if(fields.length > 0) {

 for(JField field : fields) {
 readSourceCode.append(
 returnProperReadMethod(field));
 readSourceCode.append(„\n”);
 }

 readMethod.setSourceCode(
 readSourceCode.toString());
} else {
 readMethod.setSourceCode(
 „super.read(dis);”);
}

...so we are iterating through all the fields
in the class and creating the code :)

Sample implementation of the return-
ProperReadMethod(...) method may look
like the one below:

private String returnProperReadMethod(JField
field) {
 final String name = field.getName();
 final String type = field.getType().getName();
 if(type.compareTo(„java.lang.String”) == 0)
 {
 return „this.” + name +
 „ = dis.readUTF();”;
 } else if(type.compareTo(„int”) == 0 ||
 type.compareTo(„java.lang.Integer”) == 0)
 {
 return „this.” + name +
 „ = dis.readInt();”;
 } else if(type.compareTo(„boolean”) == 0 ||
 type.compareTo(„java.lang.Boolean”) == 0)
 {
 return „this.” + name +
 „ = dis.readBoolean();”;
 } else if(type.compareTo(„java.util.Date”)
 == 0) {
 return „this.” + name +
 „ = new java.util.Date(dis.readLong());”;

 } else if(type.compareTo(„double”) == 0 ||
 type.compareTo(„java.lang.Double”) == 0) {
 return „this.” + name +
 „ = dis.readDouble();”;
 } else {
 return „this.” + name + „ = („ + type +
 „)Serializer.deserialize(dis);”;
 }
}

The code created in this way should be ad-
ded to our class with the command:

modifiedClass.addMethod(readMethod);

Please remember to import the necessa-
ry class:

modifiedClass.addImport(„de.enough.

polish.io.Serializer”) and about wri-
te(...) method implementation!!!

Time for a short quiz... Does the project
compile? :) Well... take a closer look at the
line:

for(JField field : fields)

Unfortunately, the compilation fails with
the following error message:

On the Maven website [7] we can read
this:

„...The default source setting is 1.3
and the default target setting is 1.1,
independently of the JDK you run Ma-
ven with...”

So, let us configure Maven Compile Plugin.
In order to do that, we add the following
section to pom.xml:

32 33

Unfortunately, the compilation fails

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

Listing 3. Maven Compiler Plugin configuration

<build>
 <plugins>
 <plugin>
 <groupId>
 org.apache.maven.plugins
 </groupId>
 <artifactId>
 maven-compiler-plugin
 </artifactId>
 <configuration>
 <source>1.5</source>
 <target>1.5</target>
 </configuration>
 </plugin>
 </plugins>
</build>

It is also essential to remember about set-
ting the correct parameters in castorbu-
ilder.properties file:
org.exolab.castor.builder.javaVer-

sion=1.4

org.exolab.castor.builder.jclas-
sPrinterTypes=\

 com.sonic.gen.MySourceGenera-
tor,\

 org.exolab.castor.builder.
printing.TemplateJClassPrinter

Listing 4
<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema attributeFormDefault=”unqualified”
 elementFormDefault=”qualified”
 version=”1.0”
 xmlns=”http://com.sonic/element”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xmlns:xmime=”http://www.w3.org/2005/05/xmlmime”
 xmlns:es=”http://com.sonic/types/complexTypes”
 targetNamespace=”http://com.sonic/element”>
 <xsd:import
 namespace=”http://com.sonic/types/complexTypes”
 schemaLocation=”types/sub-element.xsd”
 />
<xsd:element name=”MyElement”>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs=”unbounded”
 name=”MySubElement”
 type=”es:SubElementType” />
 </xsd:sequence>
 <xsd:attribute name=”attr1” type=”xsd:string” />
 <xsd:attribute name=”attr2” type=”xsd:int” />
 <xsd:attribute name=”attr3” type=”xsd:double” />
 <xsd:attribute name=”attr4” type=”xsd:dateTime” />
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

34 35

It is also essential to remember
about setting the correct parameters

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

Picture 4. Project view in Eclipse 3.5M3

Before we start testing our library, we
need some test data. We should create a
sample schema file and implement an au-
tomat which will generate valid code. So,
let us do it:

Go to the CastorMsgFactoryME and
create resources folder in which the ele-
ment.xsd file should be put. Next, cre-
ate types folder and place sub-element.

xsd file in it (Picture 4). It is a very good
idea to use XML Schema Editor in Eclipse
[8] for editing schema files. The listings 4
and 5 present sample content of these fi-
les.

Now we are going to use org.castor.ant-
task.CastorCodeGenTask class. We create
build.xml file. As a matter of fact, we can
delete com/sonic/factory directories, as
we are not going to need them. Files ge-

Listing 5
<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema attributeFormDefault=”unqualified”
 elementFormDefault=”qualified”
 version=”1.0”

 xmlns=”http://com.sonic/types/complexTypes”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:xmime=”http://www.w3.org/2005/05/xmlmime”
 targetNamespace=”http://com.sonic/types/complexTypes”>
 <xsd:complexType name=”SubElementType”>
 <xsd:attribute name=”attr1” type=”xsd:int” />
 <xsd:attribute name=”attr2” type=”xsd:double” />
 </xsd:complexType>
</xsd:schema>

Listing 6. Maven Antrun Plugin configuration
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.3</version>
 <executions>
 <execution>
 <id>generate-me-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <tasks>
 <property
 name=”compile_classpath”
 refid=”maven.compile.classpath”/>
 <ant antfile=”build.xml” dir=”${basedir}” />
 </tasks>
 </configuration>
 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
</plugin>

34 35

So, let us do it

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

neration will be started by using Maven. In
the generate-sources phase, we will run
Ant task using maven-antrun-plugin plu-
gin [9]. Sample configuration is shown in
the listing 6.

The compile_classpath property is actu-
ally the reference to Maven’s classpath
and it will be used in build.xml file. The
plugin will execute the default task in bu-
ild.xml:

<project name=”CastorMsgfactoryME”
default=”castor:gen:src” basedir=”.”>

This behaviour can be changed by defining
<target name=”nazwa”/> in <ant> section.

Code generation will be done by the defi-
ned task:

<taskdef name=”castor-srcgen”
 classname=”org.castor.anttask.
 CastorCodeGenTask”
 classpathref=
 ”castor.class.path” />

... and called in this way:

<castor-srcgen file=”src/main/
 resources/element.xsd” todir=
 ”${src.dir}”
 package=”${package.name}”
 warnings=”true” nodesc=”true”
 nomarshal=”true”/>

where:

<property name=”package.name”
 value=”com.sonic.dto”/>
<property name=”src.dir”
value=”src/main/java”/>
<path id=”castor.class.path”>
<path path=
 ”${compile_classpath}”/>
</path>

By default, CastorCodeGenTask generates
collections compatible with Java 1.1. If for
some reason you would like to force com-
patibility with Java 1.2, then you should
add attribute types and set its value to j2.
The nomarshal attribute [10] is set to true,
to inform generator not to generate me-
thods for marshalling/unmarshalling.

Finally, the dependency graphs for both
projects are shown in the pictures 5 and 6.

The artifacts enough-j2mepolish-client.
jar, midp.jar and cldc.jar are placed in
the /j2me-polish2.0.7/lib/ directory.

The example of how to install artifacts to
the local repository:

mvn install:install-file -DgroupId=ja-
vax.midp -DartifactId=midp -Dver-
sion=2.0 -Dpackaging=jar -Dfile=/path/

Picture 6. From Maven POM XML Editor

36 37

Finally...

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

to/file

Picture 5. From Maven POM XML Editor
Links
1.http://maven.apache.org/

2.http://ant.apache.org/

3.http://m2eclipse.codehaus.org/

4.http://dist.codehaus.org/castor/1.2/castor-1.2-src.zip

5.http://java.sun.com/javame/reference/apis/jsr139/

6.http://java.sun.com/products/archive/jdk/1.1/index.html

7.http://maven.apache.org/plugins/maven-compiler-plugin/

8.http://wiki.eclipse.org/index.php/Introduction_to_the_XSD_Editor

9.http://maven.apache.org/plugins/maven-antrun-plugin/plugin-info.html

10.http://www.castor.org/srcgen-anttask.html

36 37

Xml�in�Java�–�XStream�library

mareK�KapOwicKi

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

XML Format

XML (Extensible Markup Language) is an uni-
versal formal language used for represent-
ing different data in a structural way. XML
is platform independent which enables
document exchange between various sys-
tems and made the language popular. XML
became an unchallenged data exchange
standard on the Web. XHTML language
and documents can efficiently describe
the contents of a web page; whereas XML
allows us to describe any data which has
a well-defined structure. In addition XML
enables us to define custom dictionaries
of tags for different domains, instead us-
ing a predefined set. This article’s purpose
is not to present a detailed description of
XML. The full specification can be found
on-line and in books.

Examples of use

XML documents are widely used and have
a wide range of applications. I, as a pro-
grammer, often receive an XML file with
data, which should be stored in a data-
base. There could be information about
people, books, institutions etc. The docu-
ment has to be parsed and objects ob-
tained from that stored in a database. Data
from XML documents can be transformed
into an HTML document, a PDF file or any
other text format using XSLT. So it is good
to know how to create XML documents
to store your data in order to generate a
PDF file for instance. XML is used to create
configuration files – this usage is for sure
known to Java programmers.

XML in Java

Popular technologies

I think that two most popular API’s to ac-
cess XML from Java are SAX and DOM.
They are used for syntax analysis of the
documents. The first one processes the
document and everytime a tag, comment,
a piece of text or any other XML element
occurs, it calls a piece of Java code to signal
an event. Our code can perform an appro-
priate action then. Using this API we can
access only the currently processed ele-
ment. SAX interface is particularly useful
for processing big files. On the other hand
DOM provides a full representation of the
document in memory, in a tree form. Even
though these API’s are not subject of this
article, I recommend knowing them.

Alternative approach

A different approach is data mapping
(binding). Instead of working with ele-
ments and attributes, we would use Java
objects, which simplifies working with
XML. These approach should sound fa-
miliar, if you have used Hibernate (which
maps database tables into Java objects).

To mark the difference in using data
binding, a different term is used –
“marshalling” instead of “parsing” or
“serialization” – converting XML elements
into Java objects. A reverse process is
called “unmarshalling” – turning Java
objects into XML. XStream is a library
using this approach. It uses reflection
to identify the fields that have to be
stored. It is very simple (does not

38 39

XML became an unchallenged data exchange standard
on the Web

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

require defining an XML schema) and
simplifies greatly using XML in Java.
More information can be found at http://
xstream.codehaus.org/.

Using XStream library

Adding the library to a project

If we want to use XStream, we have to
add it to our project. In order to do this
we have to download the newest jar file
with the library – during the writing of
this article it was 1.3.1 version. If we are
not going to develop XStream, only use
it, I recommend downloading the binary
version. After extracting the downloaded
file, we can find the jar file in the lib
subdirectory (xstream-1.3.1.jar file). Next
the path to the extracted jar file should
be added to the Java Build Path of our
project. If Maven is used, the following
dependency should be added to pom.xml:

<dependency>
 <groupId>
 com.thoughtworks.xstream
 </groupId>
 <artifactId>
 xstream
 </artifactId>
 <version>1.3.1</version>
</dependency>

XStream library uses annotations therefore
Java 1.5 or higher is needed.

First use

To do a simple conversion, let us create a
Java Bean:

public class Person {
 private String name;
 private String surname;
 private Date birthday;
 //gettery i settery
}

Now we will use the library to create XML:

public String person2Xml(
 Person person) {
 XStream mapping =
 new XStream(new DomDriver());
 String xml =
 mapping.toXML(person);
 return xml;
}

Let us create a Person object, populate
its fields with custom data and call that
method. The following result will be
displayed on the screen:
<pl.marek.Person>
 <name>Marek</name>
 <surname>Kapowicki</surname>
 <birthday>
 1983-09-28 00:00:00.0 CET
 </birthday>
</pl.marek.Person>

As you can see the mapping is done
according to the names. XStream maps
the fully qualified class name (together
with the package name), which is not
always needed. The date format is a little
bit “strange” as well. Fortunately we
can modify the mapping e.g. by defining
aliases (using annotations). To convert the
resulting XML back into a Java object we
use:
public Person xml2Person(
 String xml){
 XStream mapping =
 new XStream(new DomDriver());
 return (Person) mapping.
 fromXML(xml);
}

38 39

As you can see the mapping is done according to the names.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

Advanced library use

In order to show the capabilities of the
library I have created a program which
stores information about films. The
following data is stored: title, description,
genre, actors starring, date of production,
director, cover and a link to a website.
Application allows us to create an XML
file from data provided in Java as well as
to perform the reverse process – creating
Java objects from a file.

Application is created using Maven. To
run it, you have to type mvn install from
the command line. It consists of a few
packages, which will be described briefly
(more information in Javadoc):
•	 pl.marek.beans – package

containing Java beans which will be
mapped to XML:

o Film – represents a film,
o Person – represents a person

i.e. a director, an actor,
o Films – this class contains

the full information about films, owner
etc. Objects of this class are converted
into xml files – which are the result of
running this program,
o All the beans inherit from an

abstract class BaseXML, which makes it
possible to map all files the same way
(if we use annotations to configure
mapping, not library methods)

•	 pl.marek enums – enum
with the movie genres
•	 pl.marek.xstream – the main

part of the application responsible
for data mapping:
o XMLMappingInterface –

interface used to map beans inheriting

from BaseXML. It has four methods:
	 public String

java2xml(BaseXML base) – converts
an object into a string with XML
content
	 public void

java2xmlFile(BaseXML base, String
fileName) – converts an object into
an XML file

Methods creating XML are general
and can be used to convert all
classes descending from BaseXML.
During conversion the type of the
object is detected and annotations
are loaded.

	 public BaseXML
xml2java(String xml, Class<? extends
BaseXML> className) – converts a
string (XML content) into an object
	 public BaseXML

xmlFile2java(String fileName, Class<?
extends BaseXML> className) –
converts an XML file into an object

Calling methods converting XML you
have to pass the type of the object.

o XMLMapping – a class
implementing the above interface
o PersonXMLMapping – used

for mapping Person objects. Created
to show that using XStream library
methods instead of annotation we will
have problems and cannot use one
general mapping.
o PersonConverter – converter

used to manually map classes to XML
files.

40 41

It is best to use annotations

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Siding

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

The code that calls these methods is in
the JUnit tests directory. After running the
tests we should see two new files: author.
xml and films_list.xml.

Looking at the bean code we can see that
we can map Java primitive types, custom
class objects e.g. director field in Film class
and collections – list of films in Films class.

Mapping management

Using the XStream library we can change
the mapping. It is best to use annotations,
adding them to fields in the beans. We
have to inform the converter (XStream
class object) about that fact. In order to
do this we call the method:
xStream.processAnnotat ions(Class
className) – annotations from className
class will be loaded by the converter. If we
use annotations when creating an XML
file, we have to use annotations when
converting the file into objects. Otherwise
XStream will try to map XML according to
names and the conversion will fail.

Useful annotations:
•	 @XStreamAlias(“name”) can

be used both with classes and fields. It
describes the name to which the field
should be mapped. An example for that
can be found in the Film class.
•	 @XStreamImplicit(itemFieldName

= “nazwa”) – used with collections
mapping. Describes the name to which
collections elements should be mapped.
Example in Films class.
•	 @XStreamOmitField – fields

annotated with this will not be mapped.

If we do not want to use annotations, we
can use library methods made available
by the converter. While creating author.
xml I have used xStream.alias(“director”,
Person.class) in order to define an alias
(replacing Person class name with string
“director”). I think that this approach does
not simplify using the library and makes
the code unreadable.

Converters

If we do not want to use the standard
conversion from the XStream library, we
have to write a custom converter. In order
to do so, we extend the com.thoughtworks.
xstream.converters.Converter class, which
implements two methods:
•	 public Boolean canConvert(Class

clazz) – checks which classes can be
converted
•	 public void marshall(Object

value, HierarchicalStreamWriter writer,
MarshallingContext context) – method
which is called when an objects is
converted to XML:

o value – the object which is
converted
o writer – object used to write

data
o context – current context

This method is used in the
PersonConverter – used for manuall
conversion of Person objects.

DateFormat df = DateFormat.
 getDateInstance(DateFormat.
 MEDIUM);

40 41

It is a simple tool which makes using XML files
from Java quite easy.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONSiding

if(author.getBirthday()!=null)
{
 writer.startNode(“birthday”);
 writer.setValue(df.format(
 author.getBirthday()));
 writer.endNode();
}

In the method we check what field is
currently processed and define the
action to perform while converting that
field. In the example we convert the
date to the yyyy-mm-dd format.

•	 public Object unmarshall(
HierarchicalStreamReader reader,

UnmarshallingContext context) – method
called when converting an xml file into
Java objects.

Summary

I hope I managed to encourage anyone to
familiarize oneself with XStream library. It
is a simple tool which makes using XML files
from Java quite easy. The library should be
a problem to use for anyone. Annotations
and defining custom converters allow us
to manage the mapping.

This place

is waiting

for your advertisement

mailto: kontakt@dworld.p l

43

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

43

eXpreSS�KillerS,�part�iii

damian�SzczepaniK

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONJunction

First example

In this part we will consider how JVM ta-
kes care of reference printing, that are po-
inting to nowhere. I mean null. There is
short code sample that prints class name
of the object received from collection.
What will be printed?

- null

- <null>

- different value every time

- none of above

Second example

Very short sample and question: what is it
doing? Anything at all? Is it result of „re-
factoring by removing”?

synchronized(obj)
{}

import java.util.ArrayList;
import java.util.List;

public class PrintNull {
import java.util.ArrayList;
import java.util.List;

public class PrintNull {

 private static PrintNull o;

 public static void main(String[] args) {
 List<PrintNull> list = new ArrayList<PrintNull>();
 list.add(o);
 for (PrintNull i : list) {
 System.out.println(i.toString());
 }
 }

 public String toString() {
 return (this == null) ? “<null>” : super.toString();
 }
}

44 45

teamcity:�pre-teSted�cOmmit.

paweł�zubKiewicz

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Engine room

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

While developing enterprise solutions
nowadays, It is difficult to imagine projects
which do not follow a set of practices by
Fowler commonly known as Continuous
Integration. The most important goal
of these practices is the reduction of
time (and therefore cost) of introducing
changes to the project by integrating these
changes early and frequently. The changes
are the result of many programmers’
work in a team. The idea of Continuous
Integration is 10 year old. During that time
many tools were created which helps us
– the programmers – to use this idea in
everyday’s work (in our own projects).

Among many applications supporting
the idea of Continuous Integration a very
special place is taken by integration servers,
called CI servers. They enable automatic
project building, test running and
informing about encountered errors and
failures. These are only basic capabilities
of CI servers. The most advanced systems
offer many more interesting features and
useful functions.

One of those advanced tools is TeamCity,
which gathered many users during last
year. The main reason for that is a unique
feature; pre-tested commit.

To fully appreciate its advantages, I
remind a standard scenario of everyday
programmers work:

1. Update code from the repository.
2. Changes in several classes (the

actual programming).
3. [optional] Changes’ verification –

running the unit tests.
4. Committing changes to the

repository (preceded with an
update – this is taken care of by the
repository itself).

5. Automatic download of the newest
source code by the CI server and
starting to build the project.

6. [optional] Checking whether the CI
server successfully built the project
with the introduced changes.

We all work that way. One could ask:
what is wrong with this way of work, and
furthermore, it is so commonly used?
The main problem is the fact, that even
when the programmer ran the unit tests
before commit, there are no guarantees
that the same code would compile on
the CI server and pass all the tests. All of
us were in such a situation some time.
There are many reasons for that situation.
The most popular one is the difference
between the development environment
and the CI server environment. These
could be a hard-coded file path, a different

44 45

The main reason for that is a unique feature; pre-tested commit.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONEngine room

version of a software library or other
unknown assumptions i.e. privileges to
access remote disk. It is possible that
one build could contain many changes
which worked separately but do not work
together. Sometimes the cause is very
simple; not all modified classes were sent
to the repository, which makes the code
impossible to compile. This is the time
when the search for the guilty one in the
team begins. Finding the guilty one is not
very difficult, but fixing the error might
by. In the worst scenario the work of the
whole team is halted and it is caused by
only one bad commit.

There are many solutions to this problem;
introducing a high discipline of work among
programmers or highly complicated SCM
solutions like stable trunk (which require
high discipline as well as a higher work
effort).

Engineers from JetBrains invented a
unique solution of this problem. They
modified the above mentioned scenario in
such a way that a faulty code could not get
into the repository and at the same time is
not a burden for the users. This is the pre-
tested commit feature which is supported
by TeamCity among others.

The work scenario of a programmer with
TeamCity is as follows:

1. Update the code from the
repository.

2. Changes in several classes (the
actual programming).

3. Sending the modified files to
TeamCity (using an IDE plugin).

4. Start of the build process using the

files send by the programmer and
the files from the repository:

a. Adding the modified files in
the repository if the build
was successful.

b. No changes in the repository
if the build failed.

5. Send information to the
programmer about the build result.

As it can be seen, the repository contains
only checked code in this scenario. The
amount of checks depends only on our
tests. We have the guarantee that an error
of one programmer does not block the
entire team and work is not stopped.

Using pre-tested commit is very simple
in practice and resembles using plugins
for code repositories. A working instance
of TeamCity server and an IDE plugin
is required. IntelliJ IDEA and Eclipse
environments were supported at the time
of writing this article. Plugin for Eclipse
adds four new tabs and Remote Run is the
most important one. It allows to use the
pre-tested commit feature. It is possible to
start a build with “private” changes, which
is called “Personal Build” (private build).

46 47

Using the pre-tested commit feature is easy

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Engine room

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

You can choose on the Remote Run tab:
- files with the outbound changes
- build configuration (created earlier

on the TeamCity server) in which
the changed files are to be used.

Checking the option Commit after build(s)
finish, changed files are added to the
repository only if the build completed
successfully. And this is the core of pre-
tested commit idea – the repository only
contains the files which were tested on
the CI server.

It is worth mentioning that Personal Build
can be used as a tool to increase the
productivity of a programmer (or even
as an alternative to provide him a more
powerful workstation). Using this feature
a programmer can run his tests (build

project) remotely and, at the same time,
working on another part of his solution.
His workflow is not interrupted by waiting
for the local build to finish, which often is
time and resource consuming.

The company behind TeamCity is
JetBrains, known mainly from the IntelliJ
IDEA environment. Even though TeamCity
is a proprietary solution, it is available
free of charge as a Professional edition.
This edition has a restricted number of
users, project configurations (builds –
20) and Build Agents (3). The number of
Build Agents sets the maximal number
of concurrently running build processes.
These restrictions however could not
prevent deploying this solution in small
and medium projects free of charge.

To sum it up TeamCity is an innovative
product in the CI servers’ world. This
solution can reduce the number of
problems with continuous integration
which occur in everyday work of
programmers’ teams causing loss of time
and money. Using the pre-tested commit
feature is easy and does not require the
programmer to seriously change his work
scenarios, which makes it cheap and
feasible to implement (the team would
not raise any objections).

46 47

eXpreSS�KillerS,�part�iii�-�SOlutiOn

damian�SzczepaniK

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONJunction

First example

Null was added to collection, so it will be
taken in loop. Try to call method on the
null object will result in throwing excep-
tion. It will be safer to use System.err.
println(i) instead, what will print „null”.
Overwritting toString() method is useless.
Also check if this is equal to null is poin-
tless (when is it true?).

Second example:

I found that code once in repository. We
were discussing together if it is done by

purpose or maybe it is side effect of some
refactoring and code removal. At first si-
ght this code is useless, because there is
nothing inside. However, if you look clo-
ser, we might find potential usage. There
is sample usage. Check what will be prin-
ted with and without this block in print-
True() method.
Calling wait(2000) is done only for purpo-
se of this example, and execution may be
different on different hardware and VMs
(however 2 secs should be enough to see
difference). To sum up, code is weird, ho-
wever removing it may cause with some
new bugs to fix.

public class Sync implements Runnable {
 private static final Object obj = new Object();
 private final boolean id;
 public Sync(boolean id) {
 this.id = id;
 }
 public static void main(String[] args) {
 new Thread(new Sync(false)).start();
 }
 public void run() {
 System.err.println(“start:” + id);
 if (id) {
 printTrue();
 } else {
 printFalse();
 }
 System.err.println(“end:” + id);
 }
 public void printTrue() {
 // remove that lines and check results
 synchronized (obj) {
 }
 }
 public synchronized void printFalse() {
 synchronized (obj) {
 try {
 new Thread(new Sync(true)).start();
 wait(2000);
 System.err.println(“print”);
 } catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
}

49

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

http://devoxx.com
http://devoxx.com

49

layerinG

mariuSz�SieraczKiewicz

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

Why layers (tiers)?

Almost every programmer has heard of
multi-tier (two-tier, three-tier or n-tier)
architecture. However, in many conversa-
tions concerning software development
I often had a feeling that this element
has little impact on everyday life of pro-
grammers’ work. Although this subject is
strictly related to system architecture. No
matter what your role in the project is, it
can always affect the things that you are
working on. The purpose of this article is
to explain how to use the idea of multi-tier
architecture in practice and how its under-
standing may improve the quality of your
code. It also attempts to show some prag-
matic approaches in this matter.

What is it all about?

The notion of layers, similarly to many
other human inventions, was introduced
in order to make our life easier. In this
case, the main goal was to simplify com-
puter systems development. To organize
system structure it is advisable worth to
determine logical parts of a system that
are related to each other and share some
common responsibilities. Therefore, in
many systems we can distinguish, for in-
stance:

•	 user interface that is responsible
for user interaction, in most cases
by appropriate views or windows.

•	 domain which could be defined
by main system data, processing,
algorithms, computations and
system lifecycle.

•	 communication with the outside

world, which can be understood
as ways of accessing data, writing
and reading it persistently and
cooperating with external systems.

That was only an example of splitting
system features into layers. There might
be more of them and they may be defined
in various other ways.

The first determinant that arises from using
layers is the division of a system into logical
parts with clearly defined responsibilities.
These parts are orthogonal to system
functions.

The second determinant is defined by
relations between layers. Similarly to
onions, computer systems are built out
of layers. The most outer layers are closer
to the users of an application. Therefore,
layers are ordered and serve functions
between themselves. This dependency is
shown in the picture below.

User Interface
Domain

Data Access

As you can see, the most outer layer is a
user interface, which is responsible for
communication – it deals with querying
and showing data and with a logical views
organisation. The actual processing in a
system is delegated to the domain classes,
since it is responsible for main application
functions (separately from the UI). On
the other hand, all write, read or external
systems communication operations in the
domain layer are delegated to the data
access layer. Only the adjacent layers can
communicate with each other directly;
however, it is always the upper layer that
calls the one below.

50 51

Is it worth to apply layers pattern?

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Conductor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

What are the main advantages of
using layers (tiers)?

•	 Layers are a way of dividing a
system into high-level logical
components – it is easier to
manage and understand them
because each of them has got
clearly defined responsibility.

•	 Each layer is uniquely constructed
and provides a set of interfaces
that should be implemented.

•	 Tiers should be treated as
autonomous entities which are
to a large extent independent of
each other.

•	 Components in a layer may be
reused in other applications with
the same layered structure and
this supports the idea of creating
application frameworks.

•	 Independent teams may
independently work on the
development of each system layer.

•	 Components from different
layers may be independently
implemented, installed,
maintained and upgraded.

Of course, there are also some
drawbacks:

•	 The existence of several layers
may cause some serious changes
in functions of a system and
they often enforce cascade
modifications in numerous layers.

•	 Layers may affect performance of
a system.

If you create your application working

on your own or if you have influence on
a system’s architecture, then layers will
certainly help you to take control of a
project and make its creation simpler – as
the responsibilities in a system are clearly
determined. If you come across situations
when, after a couple of development days,
your application becomes inconsistent
– there are many iterations and you
do not know how to separate the code
responsible for database queries from the
rest of the system, then you can overcome
this obstacle by dividing the system into
layers.

If you are a member of a larger team,
then it is very likely that the system’s
architecture has already been chosen
and someone has decided that your
system will follow the layers architecture
schema. It may be defined differently in
different technologies, but the basic idea
always remains the same. Knowledge of
layers allows you to understand easily the
system you are developing and makes it
significantly easier to get adjusted to its
boundaries. You should then be aware
what your classes are responsible for and
what is beyond their scope. Layers are like
continents on the map of the world – you
know what can be found and where it is
located.

Simple example with no layers

We will take a closer look at a straight-
forward console program. Even in such a
simple application, it is possible to isolate
layers. Of course, the important question
that should be asked is „Is it worth to ap-
ply layers pattern?”. For the needs of this
article and to keep it simple we will deal

50 51

layers will certainly help you
to take control of a project

and make its creation simpler

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

with a console application.
Our simple application will provide users
with a simple dictionary that would be
able to translate words from English to
Polish. It should make possible to:

•	 add new words and their
translations

•	 remove a word and its translation

•	 find a word and its equivalent

•	 show all the words and their

translations:

o in random order

o alphabetically sorted

o sorted according to dates
when the words were added

•	 the application should persistently
store its data.

One of the possible implementations of
such a system may look like the one below:

package bnsit.layers.wordbook;

import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.Date;
import java.util.List;
import java.util.Scanner;

public class Wordbook {

 private static String FILENAME = “wordbook.dat”;

 public static void main(String[] args)
 throws FileNotFoundException, IOException, ClassNotFoundException
{

 List<DictionaryWord> words = loadData();

 boolean ok = true;
 Scanner s = new Scanner(System.in);

 System.out.println(“Welcome to Wordbook.”);

 while (ok) {
 System.out.print(“dictionary> “);
 String line = s.nextLine();
 String [] arguments = line.split(“ “);

 if (line.startsWith(“search”)) {
 if (arguments.length != 2) {

52 53

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Conductor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

 System.out.println(“Command syntax: search <english_word>”
);
 } else {
 String englishWord = arguments[1];
 for (DictionaryWord word : words) {
 if (word.getEnglishWord().equals(englishWord)) {
 System.out.println(word);
 }
 }
 }
 } else if (line.startsWith(“add”)) {
 if (arguments.length != 3) {
 System.out.println(
 “Command syntax: add <english_word> <polish_word>”);
 } else {
 String englishWord = arguments[1];
 String polishWord = arguments[2];
 DictionaryWord dictionaryWord
 = new DictionaryWord(
 englishWord, polishWord, new Date());
 words.add(dictionaryWord);
 System.out.println(“Word added: “ + dictionaryWord);
 writeData(words);
 }
 } else if (line.startsWith(“delete”)) {
 if (arguments.length != 2) {
 System.out.println(
 “Command syntax:delete <word_natural_number>”);
 } else {
 int wordNumber = Integer.valueOf(arguments[1]);
 words.remove(wordNumber - 1);
 writeData(words);
 }
 } else if (line.equals(“show”)) {
 showList(words);
 } else if (line.equals(“show sorted by name”)) {
 showList(words, new Comparator<DictionaryWord>() {
 @Override
 public int compare(DictionaryWord o1, DictionaryWord o2) {
 return o1.getEnglishWord()
 .compareTo(o2.getEnglishWord());
 }
 });
 } else if (line.equals(“show sorted by date”)) {
 showList(words, new Comparator<DictionaryWord>() {
 @Override
 public int compare(DictionaryWord o1, DictionaryWord o2) {
 return o1.getDate().compareTo(o2.getDate());
 }
 });
 } else if (line.equals(“exit”)) {
 ok = false;
 } else {
 System.out.println(“Command not found: ‘” + line + “’”);
 }
 }
 s.close();
 }

 private static void writeData(List<DictionaryWord> words)

52 53

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

This is a typical application with so-called
flat architecture. Of course, because the
system is so simple, this solution has got
a lot of advantages – it is clear, concise
and easy to navigate when you browse its
source code. However, when the system
is developed, this type of solution will be
getting more and more in maintenance.
There will be more repetitions, the struc-
ture of the source code will be getting
more and more complicated and the ele-
ments of the user interface and the data
access part will get mingled.

Let us introduce layers

Is it possible to distinguish layers in such a
simple system? Of course, it is! By looking
at the application, we can separate ele-
ments that are responsible for:

•	 user interface (such as a user data
input or showing information on
the screen) – Wordbook class

•	 data processing (sorting, adding
new words) – WordbookService class

•	 data access (saving to and loading
from a file) – WordbookDao class.

All of these are shown in the following pic-

 throws IOException, FileNotFoundException {
 ObjectOutputStream objectOutputStream
 = new ObjectOutputStream(new FileOutputStream(FILENAME));
 objectOutputStream.writeObject(words);
 }

 private static List<DictionaryWord> loadData()
 throws FileNotFoundException, IOException, ClassNotFoundException
{

 List<DictionaryWord> result = new ArrayList<DictionaryWord>();
 File file = new File(FILENAME);
 if (file.exists()) {
 ObjectInputStream objectInputStream
 = new ObjectInputStream(new FileInputStream(FILENAME));
 result = (List<DictionaryWord>) objectInputStream.readO-
bject();
 }
 return result;
 }

 private static void showList(List<DictionaryWord> words) {
 int counter = 0;
 for (DictionaryWord word : words) {
 System.out.println(++counter + “ “ + word);
 }
 }

 private static void showList(List<DictionaryWord> words,
 Comparator<DictionaryWord> comparator) {

 List<DictionaryWord> wordsCopy = new ArrayList<DictionaryWor-
d>(words);
 Collections.sort(wordsCopy, comparator);
 showList(wordsCopy);
 }
}

54 55

 when the system is developed, this type of solution will be
getting more and more in maintenance

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Conductor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

ture:

Let us take a look at the classes in order to
determine their main characteristics from
each layer. We will start with the user in-
terface class – Wordbook (the source code
below). This class, compared to the code
from the previous version, has got specifi-
cally identified responsibility which is the
interaction with the user. Only functions
related to handling console and delegat-

ing specific tasks to WordbookService has
been left there, which in this case repre-
sents domain layer. Wordbook class:

•	 retrieves data from the console

•	 validates and analyzes user input
data

•	 shows appropriate messages

•	 delegates concrete operations.

Please note that there is no single line of
code related to the internal logic of the
system, there is only the user interface.
Summing up, the class was reduced so
that it plays a single role in the system.

public class Wordbook {
 private WordbookService wordbookService = new WordbookService();

 public static void main(String[] args) {
 Wordbook wordbook = new Wordbook();
 wordbook.run();
 }

 public void run() {

 boolean ok = true;
 Scanner s = new Scanner(System.in);

 System.out.println(“Welcome to Wordbook.”);

 while (ok) {
 System.out.print(“dictionary> “);
 String line = s.nextLine();
 String [] arguments = line.split(“ “);

 if (line.startsWith(“search”)) {
 if (arguments.length != 2) {
 System.out.println(
 “Command syntax: search <english_word>”);
 } else {
 String englishWord = arguments[1];

 List<DictionaryWord> words
 = wordbookService.find(englishWord);
 for (DictionaryWord word : words) {
 System.out.println(word);
 }

54 55

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

Specific operations are delegated to Word-
bookService class which deals with the
main tasks related to system functions. On
the other hand, operations of persistent
storing or data searches are delegated to
another object – WordbookDao.

Let us now have a look at WordbookService
class. What is important to notice?

1.The methods in this class respond to the
system’s functions, e.g. find, delete, find
all.

2.All the methods are short and concise.

3.The methods do not depend on the user
interface, so they can cooperate with any
user interface!

 }
 } else if (line.startsWith(“add”)) {
 if (arguments.length != 3) {
 System.out.println(“Command syntax: “
 + “add <english_word> <polish_word>”);
 } else {
 String englishWord = arguments[1];
 String polishWord = arguments[2];
 DictionaryWord dictionaryWord
 = wordbookService.createNewWord(
 englishWord, polishWord);
 System.out.println(“Word added: “ + dictionaryWord);
 }
 } else if (line.startsWith(“delete”)) {
 if (arguments.length != 2) {
 System.out.println(“Command syntax: “
 + “delete <word_natural_number>”);
 } else {
 int wordNumber = Integer.valueOf(arguments[1]);
 wordbookService.remove(wordNumber);
 }
 } else if (line.equals(“show”)) {
 List<DictionaryWord> words = wordbookService.findAll();
 showList(words);
 } else if (line.equals(“show sorted by name”)) {
 List<DictionaryWord> words
 = wordbookService.findAllSortedByName();
 showList(words);
 } else if (line.equals(“show sorted by date”)) {
 List<DictionaryWord> words
 = wordbookService.findAllSortedByDate();
 showList(words);
 } else if (line.equals(“exit”)) {
 ok = false;
 } else {
 System.out.println(“Command not found: ‘” + line + “’”);
 }
 }
 s.close();
 }

 private void showList(List<DictionaryWord> words) {
 int counter = 0;
 for (DictionaryWord word : words) {
 System.out.println(++counter + “ “ + word);
 }
 }
}

56 57

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Conductor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

4.Operations that depend on a specific
data source are delegated to WordbookDao
class.

Let us look at the Wordbook class. There
are a few elements which require your at-
tention:

1.This class is responsible for cooperation

with data and the data source (in this case
it is a file that contains serialized data).

2.Methods in this class represent basic
operations related to the system data.

3.Methods are short, precise and their re-
sponsibilities are clearly defined.

public class WordbookService {

 private WordbookDao wordbookDao = new WordbookDao();

 public List<DictionaryWord> find(String englishWord) {
 return wordbookDao.find(englishWord);
 }

 public DictionaryWord createNewWord(String englishWord, String po-
lishWord) {
 DictionaryWord dictionaryWord
 = new DictionaryWord(englishWord, polishWord, new Date());
 wordbookDao.save(dictionaryWord);
 return dictionaryWord;
 }

 public void remove(int wordNumber) {
 DictionaryWord dictionaryWord
 = wordbookDao.findByIndex(wordNumber - 1);
 wordbookDao.remove(dictionaryWord);
 }

 public List<DictionaryWord> findAll() {
 return wordbookDao.findAll();
 }

 public List<DictionaryWord> findAllSortedByName() {
 List<DictionaryWord> words = wordbookDao.findAll();
 Collections.sort(words, new Comparator<DictionaryWord>() {
 @Override
 public int compare(DictionaryWord o1, DictionaryWord o2) {
 return o1.getEnglishWord().compareTo(o2.getEnglishWord());
 }
 });
 return words;
 }

 public List<DictionaryWord> findAllSortedByDate() {
 List<DictionaryWord> words = wordbookDao.findAll();
 Collections.sort(words, new Comparator<DictionaryWord>() {
 @Override
 public int compare(DictionaryWord o1, DictionaryWord o2) {
 return o1.getDate().compareTo(o2.getDate());
 }
 });
 return words;
 }
}

56 57

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

public class WordbookDao {

 final private String FILENAME = “wordbook.dat”;
 private List<DictionaryWord> words = null;

 public WordbookDao() {
 words = loadData();
 }

 public List<DictionaryWord> find(String englishWord) {
 List<DictionaryWord> result = new ArrayList<DictionaryWord>();
 for (DictionaryWord word : words) {
 if (englishWord.equals(word.getEnglishWord())) {
 result.add(word);
 }
 }
 return result;
 }

 public DictionaryWord findByIndex(int i) {
 return words.get(i);
 }

 public List<DictionaryWord> findAll() {
 return new ArrayList<DictionaryWord>(words);
 }

 public void save(DictionaryWord dictionaryWord) {
 words.add(dictionaryWord);
 writeData(words);
 }

 public void remove(DictionaryWord dictionaryWord) {
 words.remove(dictionaryWord);
 writeData(words);
 }

 private void writeData(List<DictionaryWord> words) {
 ObjectOutputStream objectOutputStream;
 try {
 objectOutputStream = new ObjectOutputStream(
 new FileOutputStream(FILENAME));
 objectOutputStream.writeObject(words);
 } catch (Exception e) {
 throw new WordbookDaoException(e);
 }
 }

 private List<DictionaryWord> loadData() {
 List<DictionaryWord> result = new ArrayList<DictionaryWord>();
 File file = new File(FILENAME);
 if (file.exists()) {
 ObjectInputStream objectInputStream;
 try {
 objectInputStream = new ObjectInputStream(
 new FileInputStream(FILENAME));
 result =
 (List<DictionaryWord>) objectInputStream.readObject();
 } catch (Exception e) {
 throw new WordbookDaoException(e);
 }
 }
 return result;
 }
}

58 59

This class, compared to the code from the
previous version, has got specifically identified responsibility

which is the interaction with the user.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Conductor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

4.Thanks to the fact that the data ac-
cess has been encapsulated, it is easy to
change the way the data is written (e.g. to
a XML file) and it will not affect the rest of
the application.

That is how we have managed to split the
application into layers. What are the con-
sequences of this step? Well, responsibili-
ties are now clearly defined, the applica-
tion is ready for further changes, the code
has become easier to manage and better
organized – it is clear where to look for the
specific elements. On the other hand, the
application structure is now more complex
– there are three classes instead of one.
Also, the application performance may be
now worse. Well, there is no rose without
a thorn. In simple systems, which are com-
posed from less than twenty classes, such
an approach would probably consume too
much work. In bigger systems, however, it
would make their structure clarified and
would make navigation much more easy.

Layers switching

One of the main features of the layers con-
cept is the possibility of switching layers
almost in the real-time. This allows you to
dynamically adjust your solution wrapped
in one of your layers with a very little im-
pact on the other parts of a system. And
this is the magic of the layers concept.
In order to do this, we should make our
system more flexible. At the moment the
classes are strictly tied to each other. We
will use two techniques to make them
loosely coupled – these are: interfaces for
the classes that are in a layer and Depen-
dency Injection pattern. Both of these will
simplify changing of the application de-
pendencies. The system will look like this:

public class Wordbook {
 private WordbookService wordbookService = null;

 public static void main(String[] args) {
 Wordbook wordbook = new Wordbook();

 PlainWordbookService plainWordbookService =
 new PlainWordbookService();
 plainWordbookService.setWordbookDao(
 new SerializationWordbookDao());
 wordbook.setWordbookService(plainWordbookService);

 wordbook.run();
 }
 // ...
 public WordbookService getWordbookService() {
 return wordbookService;
 }

 public void setWordbookService(WordbookService wordbookService) {
 this.wordbookService = wordbookService;
 }
}

58 59

Thanks to interfaces, system elements are now loosely coupled

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

Thanks to interfaces, system elements are
now loosely coupled and we can change
their concrete implementations.

As you can see in the picture, Wordbook
class implements WordbookService inter-

face, which means that it is possible to
insert any implementation in its place
(that is based on POJO or EJB). To enable
dependency injection, we have added get-
ters and setters and put a code that builds
related classes in the method main.

public class Wordbook {
 private WordbookService wordbookService = null;

 public static void main(String[] args) {
 Wordbook wordbook = new Wordbook();

 PlainWordbookService plainWordbookService =
 new PlainWordbookService();
 plainWordbookService.setWordbookDao(
 new SerializationWordbookDao());
 wordbook.setWordbookService(plainWordbookService);

 wordbook.run();
 }
 // ...
 public WordbookService getWordbookService() {
 return wordbookService;
 }

 public void setWordbookService(WordbookService wordbookService) {
 this.wordbookService = wordbookService;
 }
}
By analogy, we have corrected PlainWord-
bookService class which implements Word-

bookService interface.

public interface WordbookService {
 public abstract List<DictionaryWord> find(String englishWord);
 public abstract DictionaryWord createNewWord(String englishWord,
 String polishWord);
 public abstract void remove(int wordNumber);
 public abstract List<DictionaryWord> findAll();
 public abstract List<DictionaryWord> findAllSortedByName();
 public abstract List<DictionaryWord> findAllSortedByDate();
}

public class PlainWordbookService implements WordbookService {
 private WordbookDao wordbookDao = null;
 public WordbookDao getWordbookDao() {
 return wordbookDao;
 }

 public void setWordbookDao(WordbookDao wordbookDao) {
 this.wordbookDao = wordbookDao;
 }
}

60 61

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON Conductor

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

In a similar way, WordbookDao class has
been modified. You can see its fragment
below. The whole source code for this arti-
cle can be downloaded here: http://www.
bnsit.pl/rozwarstwienie/.

Now the data access layer in our sample
application works with a file with serial-
ized data. It is very easy to develop some
other solution by implementing Wordbook-
Dao interface, for example, based on JDBC.

public interface WordbookDao {

 public abstract List<DictionaryWord> find(String englishWord);

 public abstract DictionaryWord findByIndex(int i);

 public abstract List<DictionaryWord> findAll();

 public abstract void save(DictionaryWord dictionaryWord);

 public abstract void remove(DictionaryWord dictionaryWord);

}

public class SerializationWordbookDao implements WordbookDao {

 final private String FILENAME = “wordbook.dat”;
 private List<DictionaryWord> words = null;

 public SerializationWordbookDao() {
 words = loadData();
 }

 public List<DictionaryWord> find(String englishWord) {
 List<DictionaryWord> result = new ArrayList<DictionaryWord>();
 for (DictionaryWord word : words) {
 if (englishWord.equals(word.getEnglishWord())) {
 result.add(word);
 }
 }
 return result;
 }

 // ...

 private List<DictionaryWord> loadData() {
 List<DictionaryWord> result = new ArrayList<DictionaryWord>();
 File file = new File(FILENAME);
 if (file.exists()) {
 ObjectInputStream objectInputStream;
 try {
 objectInputStream = new ObjectInputStream(
 new FileInputStream(FILENAME));
 result = (List<DictionaryWord>) objectInputStream.readO-
bject();
 } catch (Exception e) {
 throw new WordbookDaoException(e);
 }
 }
 return result;
 }
}

60 61

Layers are not a cure-all drug,
that will overcome all obstacles in software design.

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ONConductor

Then, the same application, with no major
changes in the user interface and domain
layers, will work with database! You can
treat it as an exercise, the correct answer
can be found on the following website:
http://www.bnsit.pl/rozwarstwienie/.

The approach described in this article may
be applied to more complex systems.

Testing

The next profit from using layers can be
noticed when we are testing our system.
To spot that it is enough to compare the
initial and the final version of the sample
program. Which is easier to test? Perhaps
the monolithic code that contains several
alternative paths mixed together with user

interface, domain and data access func-
tions? Or maybe classes that contain small
methods with clearly defined responsibili-
ties? The unit testing becomes a pleasure.

Summary

Layers are not a cure-all drug, that will
overcome all obstacles in software de-
sign. In complex systems they are indis-
pensable if they are to be effectively de-
veloped. However, each layer constitutes
an additional level of complexity. In the
case of minor applications it is a decision
of an individual, which is worth-taking if
you want to develop your application in a
structuralized way. At this stage it is up to
you how many and what kind of layers you
want to apply. Good luck with your experi-
mentation!

About me

Mariusz Sieraczkiewicz

Trener, consultant, IT project manager,
coach. Founder of Equilibrium team of
developers. Co-founder of JUG Łódź. Au-
thor of articles about software engine-
ering. Co-owner of training company BNS
IT. Happy husband :-) http://www.linke-
din.com/pub/2/a24/812

62

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

GrOOvymaG�review�-�June�2009

KrzySztOf�KOnwiSarz

GroovyMag is a magazine created by Gro-
ovy and Grails users and enthusiasts. It
has been publishing every month since
November 2008 as a pdf.

Batch processing with Spring Batch
Author: Bob Brown

Spring Batch is one of the youngest part
of Spring family. This Framework allows
batch processing of huge amount of data
providing tools for read, validating and wri-
te data, logging, tasks management and
resource management as well as parallel
computing. Presented example is Groovy
application that converts data from hard
to read text format to XML.

Groovy under the Hood – Groovy
Scripts
Author: Kirsten Schwark

This time, in this recurrent section, we can
learn how scipts in Groovy are implemen-
ted. We can read how they are executed
and how creators treated local variables
and properties in the scripts.

Grails in a J2EE World - Sharing the
Database
Author: Shawn Hartsock

If the database can be used by many
users, it can be used also by many appli-
cations. Making this sentence happen, au-
thor shows us that tough task that is mi-
gration to new platform can be easy with
Grails. He starts with optimistic locking
on old system (in this example it is JBoss),
moving forward to mapping DB to domain
classes in GORM.

One-to-Many Demystified – Manag-
ing Complex Relationships in Grails
Author: Tyler Williams

Default GSP pages generated by scaffol-
ding in Grails are very rarely good enough
for production systems. It is even worse
for views that need to work on both ends
of one-to-many relations. Author shows
us how this problem can be solved using
modal windows and table component. He
also propose his own solution that is the
best for his example, based on HTML and
AJAX.

Plugin Corner – Grails Functional
Test Plugin
Author: Dave Klein

Grails Functional Test is an alternative to
functional tests with Canoo Webtest and
Selenium. Its advantages are great inte-
gration with Grails testing framework and
clear code created. Similar to Canoo We-
btest it is using HtmlUnit to emulate web
browser.

About Author
Student of Comuter Science at Physics Fa-
culty, Adam Mickiewicz University in Po-
znan.

Megaphone

62

M
AI

N
ST

AT
IO

N
W

AI
TI

NG
 R

OO
M

CO
ND

UC
TO

R
SI

DI
NG

EN
GI

NE
 R

OO
M

JU
NC

TI
ON

http://vriltek.com

	i18n
	GeeCON 2009
	Introduction To Grails
	The problems of large J2EE applications
	GMF - how to create a graphical editor in a few moments
	J2ME: Objects Serialization
	XML in Java – XStream library
	Express Killers, part III
	TeamCity: pre-tested commit.
	Express Killers, part III - Solution
	Layering
	GroovyMag Review - June 2009

